Matches in SemOpenAlex for { <https://semopenalex.org/work/W2127719194> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2127719194 endingPage "38" @default.
- W2127719194 startingPage "34" @default.
- W2127719194 abstract "Social networks are flourishing because of fast growing Internet and the World Wide Web, and more research efforts have been put on Social Network Analysis (SNA). A social network can be modeled like a graph, where the nodes represent persons, and an edge between them represent direct relationship between the persons. One of the issues in SNA is to identifying criminals from groups of individuals. In a real social network, there must have various relationships between individuals, like friendships, business relationships, and common interest relationships etc. The internet itself is a huge social network. To model such a network, link analysis need to be proposed. A page in web may treat as a node, and hyperlink between them can be represented as relationships. After social network graph is constructed, link analysis and graph partitioning algorithms may be applied to identify the hidden links in that network. Most of the existing algorithms related to social network analysis assume that their existing only one single social network, with relatively multiple relationship like Web page linkage. In typical social networks, there always have various kinds of relations. Every relation can be identified as a relation network. These different types of relations play different tasks in different roles. The work here attempts to find the problem of mining hidden relationships on social networks. Social network analysis (SNA) is a set of powerful techniques that can be used to identify clusters, patterns and hidden structures within social networks. Here the problem is identified with the following steps. 1. Analyzing information flow through the network using affected dataset, 2. Discovering non-obvious relations between actors, and 3. Identifying nodes that are directly or indirectly connected to most other nodes in the social network. This is done with the help of mining algorithms like Min-cut and Regression." @default.
- W2127719194 created "2016-06-24" @default.
- W2127719194 creator A5041135776 @default.
- W2127719194 creator A5067193047 @default.
- W2127719194 date "2013-09-26" @default.
- W2127719194 modified "2023-10-18" @default.
- W2127719194 title "Detection and Analysis of Hidden Activities in Social Networks" @default.
- W2127719194 cites W1529273519 @default.
- W2127719194 cites W1806244112 @default.
- W2127719194 cites W1904672382 @default.
- W2127719194 cites W1964437163 @default.
- W2127719194 cites W1979005794 @default.
- W2127719194 cites W1988515336 @default.
- W2127719194 cites W1998091733 @default.
- W2127719194 cites W2007427033 @default.
- W2127719194 cites W2009331946 @default.
- W2127719194 cites W201447438 @default.
- W2127719194 cites W2030884246 @default.
- W2127719194 cites W2039112764 @default.
- W2127719194 cites W2058621822 @default.
- W2127719194 cites W2082193889 @default.
- W2127719194 cites W2087061637 @default.
- W2127719194 cites W2090931994 @default.
- W2127719194 cites W2096296626 @default.
- W2127719194 cites W2112868720 @default.
- W2127719194 cites W2113213835 @default.
- W2127719194 cites W2120263102 @default.
- W2127719194 cites W2122689096 @default.
- W2127719194 cites W2131839987 @default.
- W2127719194 cites W2139404009 @default.
- W2127719194 cites W2141137569 @default.
- W2127719194 cites W2147974870 @default.
- W2127719194 cites W2154897810 @default.
- W2127719194 cites W2495653519 @default.
- W2127719194 doi "https://doi.org/10.5120/13570-1404" @default.
- W2127719194 hasPublicationYear "2013" @default.
- W2127719194 type Work @default.
- W2127719194 sameAs 2127719194 @default.
- W2127719194 citedByCount "10" @default.
- W2127719194 countsByYear W21277191942013 @default.
- W2127719194 countsByYear W21277191942015 @default.
- W2127719194 countsByYear W21277191942016 @default.
- W2127719194 countsByYear W21277191942017 @default.
- W2127719194 countsByYear W21277191942019 @default.
- W2127719194 countsByYear W21277191942022 @default.
- W2127719194 crossrefType "journal-article" @default.
- W2127719194 hasAuthorship W2127719194A5041135776 @default.
- W2127719194 hasAuthorship W2127719194A5067193047 @default.
- W2127719194 hasBestOaLocation W21277191941 @default.
- W2127719194 hasConcept C114713312 @default.
- W2127719194 hasConcept C136764020 @default.
- W2127719194 hasConcept C154945302 @default.
- W2127719194 hasConcept C2522767166 @default.
- W2127719194 hasConcept C41008148 @default.
- W2127719194 hasConcept C518677369 @default.
- W2127719194 hasConceptScore W2127719194C114713312 @default.
- W2127719194 hasConceptScore W2127719194C136764020 @default.
- W2127719194 hasConceptScore W2127719194C154945302 @default.
- W2127719194 hasConceptScore W2127719194C2522767166 @default.
- W2127719194 hasConceptScore W2127719194C41008148 @default.
- W2127719194 hasConceptScore W2127719194C518677369 @default.
- W2127719194 hasIssue "16" @default.
- W2127719194 hasLocation W21277191941 @default.
- W2127719194 hasLocation W21277191942 @default.
- W2127719194 hasOpenAccess W2127719194 @default.
- W2127719194 hasPrimaryLocation W21277191941 @default.
- W2127719194 hasRelatedWork W1967136487 @default.
- W2127719194 hasRelatedWork W2234238252 @default.
- W2127719194 hasRelatedWork W2339265863 @default.
- W2127719194 hasRelatedWork W2765911712 @default.
- W2127719194 hasRelatedWork W3107474891 @default.
- W2127719194 hasRelatedWork W3121950545 @default.
- W2127719194 hasRelatedWork W3151710375 @default.
- W2127719194 hasRelatedWork W4236207422 @default.
- W2127719194 hasRelatedWork W4281871631 @default.
- W2127719194 hasRelatedWork W4320063274 @default.
- W2127719194 hasVolume "77" @default.
- W2127719194 isParatext "false" @default.
- W2127719194 isRetracted "false" @default.
- W2127719194 magId "2127719194" @default.
- W2127719194 workType "article" @default.