Matches in SemOpenAlex for { <https://semopenalex.org/work/W2127777194> ?p ?o ?g. }
- W2127777194 endingPage "6932" @default.
- W2127777194 startingPage "6919" @default.
- W2127777194 abstract "Purpose: To compare and evaluate the use of super‐resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through‐plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high‐resolution image from multiple thick‐slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick‐slice T2‐weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high‐resolution scan using peak signal‐to‐noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super‐resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through‐plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super‐resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image‐domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in‐plane and out‐of‐plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out‐of‐plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Conclusions: Thick‐slice 2D T2‐weighted MRI scans are part of many routine clinical protocols due to their high signal‐to‐noise ratio, but are often severely affected by through‐plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick‐slice scans, super‐resolution MRI reconstruction techniques can be used to fuse those scans to generate a high‐resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans." @default.
- W2127777194 created "2016-06-24" @default.
- W2127777194 creator A5013523388 @default.
- W2127777194 creator A5029485281 @default.
- W2127777194 creator A5054913205 @default.
- W2127777194 creator A5058812679 @default.
- W2127777194 creator A5066921588 @default.
- W2127777194 creator A5071639216 @default.
- W2127777194 creator A5079691093 @default.
- W2127777194 date "2015-12-01" @default.
- W2127777194 modified "2023-10-14" @default.
- W2127777194 title "Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI" @default.
- W2127777194 cites W1547766599 @default.
- W2127777194 cites W1582236847 @default.
- W2127777194 cites W1748353765 @default.
- W2127777194 cites W1981374413 @default.
- W2127777194 cites W1985806826 @default.
- W2127777194 cites W1989645410 @default.
- W2127777194 cites W1994514622 @default.
- W2127777194 cites W2001360044 @default.
- W2127777194 cites W2009530659 @default.
- W2127777194 cites W2010636967 @default.
- W2127777194 cites W2013021661 @default.
- W2127777194 cites W2024251722 @default.
- W2127777194 cites W2030911394 @default.
- W2127777194 cites W2033961013 @default.
- W2127777194 cites W2034432063 @default.
- W2127777194 cites W2039887952 @default.
- W2127777194 cites W2042900903 @default.
- W2127777194 cites W2052288235 @default.
- W2127777194 cites W2053607292 @default.
- W2127777194 cites W2056189002 @default.
- W2127777194 cites W2059784307 @default.
- W2127777194 cites W2066352158 @default.
- W2127777194 cites W2067042811 @default.
- W2127777194 cites W2083747018 @default.
- W2127777194 cites W2085920033 @default.
- W2127777194 cites W2090612612 @default.
- W2127777194 cites W2099944953 @default.
- W2127777194 cites W2106600765 @default.
- W2127777194 cites W2115110620 @default.
- W2127777194 cites W2133665775 @default.
- W2127777194 cites W2134584543 @default.
- W2127777194 cites W2135264048 @default.
- W2127777194 cites W2146299228 @default.
- W2127777194 cites W2166966312 @default.
- W2127777194 cites W2964325628 @default.
- W2127777194 doi "https://doi.org/10.1118/1.4935149" @default.
- W2127777194 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4644155" @default.
- W2127777194 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26632048" @default.
- W2127777194 hasPublicationYear "2015" @default.
- W2127777194 type Work @default.
- W2127777194 sameAs 2127777194 @default.
- W2127777194 citedByCount "22" @default.
- W2127777194 countsByYear W21277771942016 @default.
- W2127777194 countsByYear W21277771942017 @default.
- W2127777194 countsByYear W21277771942018 @default.
- W2127777194 countsByYear W21277771942019 @default.
- W2127777194 countsByYear W21277771942020 @default.
- W2127777194 countsByYear W21277771942021 @default.
- W2127777194 countsByYear W21277771942022 @default.
- W2127777194 countsByYear W21277771942023 @default.
- W2127777194 crossrefType "journal-article" @default.
- W2127777194 hasAuthorship W2127777194A5013523388 @default.
- W2127777194 hasAuthorship W2127777194A5029485281 @default.
- W2127777194 hasAuthorship W2127777194A5054913205 @default.
- W2127777194 hasAuthorship W2127777194A5058812679 @default.
- W2127777194 hasAuthorship W2127777194A5066921588 @default.
- W2127777194 hasAuthorship W2127777194A5071639216 @default.
- W2127777194 hasAuthorship W2127777194A5079691093 @default.
- W2127777194 hasBestOaLocation W21277771942 @default.
- W2127777194 hasConcept C103278499 @default.
- W2127777194 hasConcept C104293457 @default.
- W2127777194 hasConcept C115961682 @default.
- W2127777194 hasConcept C126838900 @default.
- W2127777194 hasConcept C141379421 @default.
- W2127777194 hasConcept C143409427 @default.
- W2127777194 hasConcept C153180895 @default.
- W2127777194 hasConcept C154945302 @default.
- W2127777194 hasConcept C162324750 @default.
- W2127777194 hasConcept C176217482 @default.
- W2127777194 hasConcept C205372480 @default.
- W2127777194 hasConcept C21547014 @default.
- W2127777194 hasConcept C2989005 @default.
- W2127777194 hasConcept C33923547 @default.
- W2127777194 hasConcept C41008148 @default.
- W2127777194 hasConcept C47432892 @default.
- W2127777194 hasConcept C71924100 @default.
- W2127777194 hasConceptScore W2127777194C103278499 @default.
- W2127777194 hasConceptScore W2127777194C104293457 @default.
- W2127777194 hasConceptScore W2127777194C115961682 @default.
- W2127777194 hasConceptScore W2127777194C126838900 @default.
- W2127777194 hasConceptScore W2127777194C141379421 @default.
- W2127777194 hasConceptScore W2127777194C143409427 @default.
- W2127777194 hasConceptScore W2127777194C153180895 @default.
- W2127777194 hasConceptScore W2127777194C154945302 @default.
- W2127777194 hasConceptScore W2127777194C162324750 @default.
- W2127777194 hasConceptScore W2127777194C176217482 @default.