Matches in SemOpenAlex for { <https://semopenalex.org/work/W2127884014> ?p ?o ?g. }
- W2127884014 endingPage "76" @default.
- W2127884014 startingPage "66" @default.
- W2127884014 abstract "<para xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> This paper presents a multiobjective optimization model of wind turbine performance. Three different objectives, wind power output, vibration of drive train, and vibration of tower, are used to evaluate the wind turbine performance. Neural network models are developed to capture dynamic equations modeling wind turbine performance. Due to the complexity and nonlinearity of these models, an evolutionary strategy algorithm is used to solve the multiobjective optimization problem. Data sets at two different frequencies, 10 s and 1 min, are used in this study. Computational results with the two data sets are reported. Analysis of these results points to a reduction of wind turbine vibrations potentially larger than the gains reported in the paper. This is due to the fact that vibrations may occur at frequencies higher than ones reflected in the 10-s data collected according to the standard practice used in the wind industry. </para>" @default.
- W2127884014 created "2016-06-24" @default.
- W2127884014 creator A5033746770 @default.
- W2127884014 creator A5077972623 @default.
- W2127884014 creator A5082849266 @default.
- W2127884014 date "2010-07-01" @default.
- W2127884014 modified "2023-10-03" @default.
- W2127884014 title "Optimization of Wind Turbine Performance With Data-Driven Models" @default.
- W2127884014 cites W1965687207 @default.
- W2127884014 cites W1970377333 @default.
- W2127884014 cites W1985255373 @default.
- W2127884014 cites W1989032799 @default.
- W2127884014 cites W1997369014 @default.
- W2127884014 cites W2004806133 @default.
- W2127884014 cites W2019972052 @default.
- W2127884014 cites W2031920414 @default.
- W2127884014 cites W2050778826 @default.
- W2127884014 cites W2052045756 @default.
- W2127884014 cites W2057893679 @default.
- W2127884014 cites W2065487803 @default.
- W2127884014 cites W2105229037 @default.
- W2127884014 cites W2106334424 @default.
- W2127884014 cites W2111307099 @default.
- W2127884014 cites W2113885910 @default.
- W2127884014 cites W2124607810 @default.
- W2127884014 cites W2134843786 @default.
- W2127884014 cites W2135443714 @default.
- W2127884014 cites W2136755510 @default.
- W2127884014 cites W2137471655 @default.
- W2127884014 cites W2163006955 @default.
- W2127884014 cites W2764804505 @default.
- W2127884014 cites W40479804 @default.
- W2127884014 cites W4247236552 @default.
- W2127884014 cites W4255272544 @default.
- W2127884014 cites W4299527075 @default.
- W2127884014 doi "https://doi.org/10.1109/tste.2010.2046919" @default.
- W2127884014 hasPublicationYear "2010" @default.
- W2127884014 type Work @default.
- W2127884014 sameAs 2127884014 @default.
- W2127884014 citedByCount "58" @default.
- W2127884014 countsByYear W21278840142012 @default.
- W2127884014 countsByYear W21278840142013 @default.
- W2127884014 countsByYear W21278840142014 @default.
- W2127884014 countsByYear W21278840142015 @default.
- W2127884014 countsByYear W21278840142016 @default.
- W2127884014 countsByYear W21278840142017 @default.
- W2127884014 countsByYear W21278840142018 @default.
- W2127884014 countsByYear W21278840142019 @default.
- W2127884014 countsByYear W21278840142020 @default.
- W2127884014 countsByYear W21278840142021 @default.
- W2127884014 countsByYear W21278840142022 @default.
- W2127884014 countsByYear W21278840142023 @default.
- W2127884014 crossrefType "journal-article" @default.
- W2127884014 hasAuthorship W2127884014A5033746770 @default.
- W2127884014 hasAuthorship W2127884014A5077972623 @default.
- W2127884014 hasAuthorship W2127884014A5082849266 @default.
- W2127884014 hasConcept C111335779 @default.
- W2127884014 hasConcept C119599485 @default.
- W2127884014 hasConcept C119857082 @default.
- W2127884014 hasConcept C121332964 @default.
- W2127884014 hasConcept C127413603 @default.
- W2127884014 hasConcept C146978453 @default.
- W2127884014 hasConcept C153294291 @default.
- W2127884014 hasConcept C154945302 @default.
- W2127884014 hasConcept C158622935 @default.
- W2127884014 hasConcept C161067210 @default.
- W2127884014 hasConcept C163258240 @default.
- W2127884014 hasConcept C198394728 @default.
- W2127884014 hasConcept C2524010 @default.
- W2127884014 hasConcept C2775924081 @default.
- W2127884014 hasConcept C2777831296 @default.
- W2127884014 hasConcept C2778449969 @default.
- W2127884014 hasConcept C33923547 @default.
- W2127884014 hasConcept C41008148 @default.
- W2127884014 hasConcept C47446073 @default.
- W2127884014 hasConcept C50644808 @default.
- W2127884014 hasConcept C62520636 @default.
- W2127884014 hasConcept C66938386 @default.
- W2127884014 hasConcept C67186912 @default.
- W2127884014 hasConcept C68781425 @default.
- W2127884014 hasConcept C77088390 @default.
- W2127884014 hasConcept C78600449 @default.
- W2127884014 hasConceptScore W2127884014C111335779 @default.
- W2127884014 hasConceptScore W2127884014C119599485 @default.
- W2127884014 hasConceptScore W2127884014C119857082 @default.
- W2127884014 hasConceptScore W2127884014C121332964 @default.
- W2127884014 hasConceptScore W2127884014C127413603 @default.
- W2127884014 hasConceptScore W2127884014C146978453 @default.
- W2127884014 hasConceptScore W2127884014C153294291 @default.
- W2127884014 hasConceptScore W2127884014C154945302 @default.
- W2127884014 hasConceptScore W2127884014C158622935 @default.
- W2127884014 hasConceptScore W2127884014C161067210 @default.
- W2127884014 hasConceptScore W2127884014C163258240 @default.
- W2127884014 hasConceptScore W2127884014C198394728 @default.
- W2127884014 hasConceptScore W2127884014C2524010 @default.
- W2127884014 hasConceptScore W2127884014C2775924081 @default.
- W2127884014 hasConceptScore W2127884014C2777831296 @default.
- W2127884014 hasConceptScore W2127884014C2778449969 @default.