Matches in SemOpenAlex for { <https://semopenalex.org/work/W2127969591> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2127969591 abstract "Boundary element method (BEM) is a powerful computational tool for analysing piezoelectric problems. The BEM has been so well developed during the past 40 years that it has been considered as a very popular computational tool. This method consists of formulating the engineering problem in terms of an integral equations relating only boundary values and determining its solutions numerically. Thus, it requires only a surface discretization, rather than a full-domain discretization with “domain-type techniques, such as the finite element method. If interior domain values are needed, however, it can be subsequently calculated from boundary data. Remarkable advances in this area during last decades can be found, for example, in Manolis and Beskos[1] and Qin [2,3]. For piezoelectric problems, BEM, as an important complementary tool for analytical method [4-8], has been the subject of fruitful scientific attention by many a distinguished researcher e.g. Lee and Jiang [9], Denda and Mansukh [10], Sanz, Ariza and Dominguez [11], Lee and Jiang [9] derived the boundary integral equation of piezoelectric media by the method of weighted residuals for plane piezoelectricity. Lu and Mahrenholtz [12] presented a variational boundary integral equation for the same problem. Ding, Wang and Chen [13] developed a boundary integral formulation which is efficient for analysing crack problems in piezoelectric material. Xu and Rajapakse [14,15] presented the formulations for problems of piezoelectric solids with various defects (cavities, inclusions, cracks, etc.). Pan [16] derived a single domain BE formulation for 2D static crack problems. Denda and Lua [17] developed a BEM formulation using Stroh’s formalism to derive the fundamental solution without numerical results. Qin [18] presented a BEM formulation for cracked piezoelectric materials with half-plane boundary. Later, Qin and Lu [19] extended the model presented in [18] to the case of piezoelectric materials containing both crack and inclusion problems. Davi and Molazo [20] used the known sub domain method to formulate a multi-domain BEM, well suited for crack problems, by modelling crack faces as boundaries of the different sub domains. Groh and Kuma [21] developed a direct collocation boundary element code with a sub domain technique for analysing crack problems and calculating stress intensity factors. Qin an Mai [22] investigate crack-hole interaction of piezoelectric materials using BEM. Zhao et al. [23], presented a boundary integral-differential model for interfacial cracks in 3D piezoelectric solids. Qin [24,25] imbedded BEM into micromechanics model for evaluating effective properties of piezoelectric solids. Analysis of Piezoelectric Solids through Boundary Element Method" @default.
- W2127969591 created "2016-06-24" @default.
- W2127969591 creator A5065667677 @default.
- W2127969591 date "2013-01-01" @default.
- W2127969591 modified "2023-09-24" @default.
- W2127969591 title "Analysis of Piezoelectric Solids through Boundary Element Method" @default.
- W2127969591 cites W132514848 @default.
- W2127969591 cites W1519967526 @default.
- W2127969591 cites W1968544148 @default.
- W2127969591 cites W1971036757 @default.
- W2127969591 cites W1975284389 @default.
- W2127969591 cites W1987968527 @default.
- W2127969591 cites W1991609614 @default.
- W2127969591 cites W1992721458 @default.
- W2127969591 cites W1993608829 @default.
- W2127969591 cites W1995412752 @default.
- W2127969591 cites W1997467869 @default.
- W2127969591 cites W2002795514 @default.
- W2127969591 cites W2005961618 @default.
- W2127969591 cites W2021709293 @default.
- W2127969591 cites W2028099804 @default.
- W2127969591 cites W2043272431 @default.
- W2127969591 cites W2056690444 @default.
- W2127969591 cites W2060471510 @default.
- W2127969591 cites W2062488298 @default.
- W2127969591 cites W2062734397 @default.
- W2127969591 cites W2078635404 @default.
- W2127969591 cites W2079028632 @default.
- W2127969591 cites W2080756345 @default.
- W2127969591 cites W2094448342 @default.
- W2127969591 cites W2109770277 @default.
- W2127969591 doi "https://doi.org/10.4172/2168-9873.1000e113" @default.
- W2127969591 hasPublicationYear "2013" @default.
- W2127969591 type Work @default.
- W2127969591 sameAs 2127969591 @default.
- W2127969591 citedByCount "3" @default.
- W2127969591 countsByYear W21279695912015 @default.
- W2127969591 countsByYear W21279695912016 @default.
- W2127969591 countsByYear W21279695912017 @default.
- W2127969591 crossrefType "journal-article" @default.
- W2127969591 hasAuthorship W2127969591A5065667677 @default.
- W2127969591 hasBestOaLocation W21279695911 @default.
- W2127969591 hasConcept C100082104 @default.
- W2127969591 hasConcept C121332964 @default.
- W2127969591 hasConcept C127413603 @default.
- W2127969591 hasConcept C134306372 @default.
- W2127969591 hasConcept C135628077 @default.
- W2127969591 hasConcept C17744445 @default.
- W2127969591 hasConcept C183696295 @default.
- W2127969591 hasConcept C199539241 @default.
- W2127969591 hasConcept C200288055 @default.
- W2127969591 hasConcept C24890656 @default.
- W2127969591 hasConcept C2522767166 @default.
- W2127969591 hasConcept C33923547 @default.
- W2127969591 hasConcept C41008148 @default.
- W2127969591 hasConcept C62354387 @default.
- W2127969591 hasConcept C63632240 @default.
- W2127969591 hasConcept C66938386 @default.
- W2127969591 hasConcept C78519656 @default.
- W2127969591 hasConceptScore W2127969591C100082104 @default.
- W2127969591 hasConceptScore W2127969591C121332964 @default.
- W2127969591 hasConceptScore W2127969591C127413603 @default.
- W2127969591 hasConceptScore W2127969591C134306372 @default.
- W2127969591 hasConceptScore W2127969591C135628077 @default.
- W2127969591 hasConceptScore W2127969591C17744445 @default.
- W2127969591 hasConceptScore W2127969591C183696295 @default.
- W2127969591 hasConceptScore W2127969591C199539241 @default.
- W2127969591 hasConceptScore W2127969591C200288055 @default.
- W2127969591 hasConceptScore W2127969591C24890656 @default.
- W2127969591 hasConceptScore W2127969591C2522767166 @default.
- W2127969591 hasConceptScore W2127969591C33923547 @default.
- W2127969591 hasConceptScore W2127969591C41008148 @default.
- W2127969591 hasConceptScore W2127969591C62354387 @default.
- W2127969591 hasConceptScore W2127969591C63632240 @default.
- W2127969591 hasConceptScore W2127969591C66938386 @default.
- W2127969591 hasConceptScore W2127969591C78519656 @default.
- W2127969591 hasIssue "01" @default.
- W2127969591 hasLocation W21279695911 @default.
- W2127969591 hasOpenAccess W2127969591 @default.
- W2127969591 hasPrimaryLocation W21279695911 @default.
- W2127969591 hasRelatedWork W1491979731 @default.
- W2127969591 hasRelatedWork W154211997 @default.
- W2127969591 hasRelatedWork W1840097117 @default.
- W2127969591 hasRelatedWork W1983303981 @default.
- W2127969591 hasRelatedWork W1986460209 @default.
- W2127969591 hasRelatedWork W2039322717 @default.
- W2127969591 hasRelatedWork W2230214920 @default.
- W2127969591 hasRelatedWork W2351756176 @default.
- W2127969591 hasRelatedWork W3123981042 @default.
- W2127969591 hasRelatedWork W4231740164 @default.
- W2127969591 hasVolume "02" @default.
- W2127969591 isParatext "false" @default.
- W2127969591 isRetracted "false" @default.
- W2127969591 magId "2127969591" @default.
- W2127969591 workType "article" @default.