Matches in SemOpenAlex for { <https://semopenalex.org/work/W2128160147> ?p ?o ?g. }
- W2128160147 abstract "The Constraint Based Decomposition (CBD) is a constructive neural network technique that builds a three or four layer network, has guaranteed convergence and can deal with binary, n-ary, class labeled and real-value problems. CBD is shown to be able to solve complicated problems in a simple, fast and reliable manner. The technique is further enhanced by two modifications (locking detection and redundancy elimination) which address the training speed and the efficiency of the internal representation built by the network. The redundancy elimination aims at building more compact architectures while the locking detection aims at improving the training speed. The computational cost of the redundancy elimination is negligible and this enhancement can be used for any problem. However, the computational cost of the locking detection is exponential in the number of dimensions and should only be used in low dimensional spaces. The experimental results show the performance of the algorithm presented in a series of classical benchmark problems including the 2-spiral problem and the Iris, Wine, Glass, Lenses, Ionosphere, Lung cancer, Pima Indians, Bupa, TicTacToe, Balance and Zoo data sets from the UCI machine learning repository. CBD's generalization accuracy is compared with that of C4.5, C4.5 with rules, incremental decision trees, oblique classifiers, linear machine decision trees, CN2, learning vector quantization (LVQ), backpropagation, nearest neighbor, Q* and radial basis functions (RBFs). CBD provides the second best average accuracy on the problems tested as well as the best reliability (the lowest standard deviation)." @default.
- W2128160147 created "2016-06-24" @default.
- W2128160147 creator A5006190733 @default.
- W2128160147 date "2001-05-01" @default.
- W2128160147 modified "2023-10-12" @default.
- W2128160147 title "The constraint based decomposition (CBD) training architecture" @default.
- W2128160147 cites W150019511 @default.
- W2128160147 cites W1501225271 @default.
- W2128160147 cites W1503241868 @default.
- W2128160147 cites W1508965297 @default.
- W2128160147 cites W1516981505 @default.
- W2128160147 cites W1517040068 @default.
- W2128160147 cites W1536929369 @default.
- W2128160147 cites W1537062386 @default.
- W2128160147 cites W1537289746 @default.
- W2128160147 cites W1539097253 @default.
- W2128160147 cites W1594031697 @default.
- W2128160147 cites W1595593957 @default.
- W2128160147 cites W1720257264 @default.
- W2128160147 cites W1761572771 @default.
- W2128160147 cites W1936910421 @default.
- W2128160147 cites W1967463120 @default.
- W2128160147 cites W1973787661 @default.
- W2128160147 cites W1978126533 @default.
- W2128160147 cites W1986677725 @default.
- W2128160147 cites W1989344766 @default.
- W2128160147 cites W1989761382 @default.
- W2128160147 cites W1989946131 @default.
- W2128160147 cites W2009784977 @default.
- W2128160147 cites W2010695026 @default.
- W2128160147 cites W2010833108 @default.
- W2128160147 cites W2015400868 @default.
- W2128160147 cites W2018094844 @default.
- W2128160147 cites W2024184249 @default.
- W2128160147 cites W2025429934 @default.
- W2128160147 cites W2046949678 @default.
- W2128160147 cites W2050485765 @default.
- W2128160147 cites W2064259459 @default.
- W2128160147 cites W206794860 @default.
- W2128160147 cites W2070665556 @default.
- W2128160147 cites W2078422577 @default.
- W2128160147 cites W2081136789 @default.
- W2128160147 cites W2084812512 @default.
- W2128160147 cites W2095109681 @default.
- W2128160147 cites W2105040691 @default.
- W2128160147 cites W2107719129 @default.
- W2128160147 cites W2109779438 @default.
- W2128160147 cites W2110179049 @default.
- W2128160147 cites W2110836275 @default.
- W2128160147 cites W2112841646 @default.
- W2128160147 cites W2116768614 @default.
- W2128160147 cites W2117941247 @default.
- W2128160147 cites W2119018096 @default.
- W2128160147 cites W2123098109 @default.
- W2128160147 cites W2125055259 @default.
- W2128160147 cites W2126253125 @default.
- W2128160147 cites W2128033389 @default.
- W2128160147 cites W2129789617 @default.
- W2128160147 cites W2129831132 @default.
- W2128160147 cites W2131097266 @default.
- W2128160147 cites W2133632100 @default.
- W2128160147 cites W2133640977 @default.
- W2128160147 cites W2133826976 @default.
- W2128160147 cites W2134004693 @default.
- W2128160147 cites W2136000097 @default.
- W2128160147 cites W2142248489 @default.
- W2128160147 cites W2142544077 @default.
- W2128160147 cites W2143353778 @default.
- W2128160147 cites W2143956139 @default.
- W2128160147 cites W2148034566 @default.
- W2128160147 cites W2151097927 @default.
- W2128160147 cites W2161477053 @default.
- W2128160147 cites W216653025 @default.
- W2128160147 cites W2166729631 @default.
- W2128160147 cites W2171277043 @default.
- W2128160147 cites W2214733097 @default.
- W2128160147 cites W2215418550 @default.
- W2128160147 cites W2243072028 @default.
- W2128160147 cites W2329329248 @default.
- W2128160147 cites W2611560887 @default.
- W2128160147 cites W26772505 @default.
- W2128160147 cites W2889457238 @default.
- W2128160147 cites W3041834803 @default.
- W2128160147 cites W3085162807 @default.
- W2128160147 cites W50076749 @default.
- W2128160147 cites W569156507 @default.
- W2128160147 cites W57790744 @default.
- W2128160147 cites W619796456 @default.
- W2128160147 cites W80760317 @default.
- W2128160147 cites W94523489 @default.
- W2128160147 doi "https://doi.org/10.1016/s0893-6080(01)00040-5" @default.
- W2128160147 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11411636" @default.
- W2128160147 hasPublicationYear "2001" @default.
- W2128160147 type Work @default.
- W2128160147 sameAs 2128160147 @default.
- W2128160147 citedByCount "22" @default.
- W2128160147 countsByYear W21281601472015 @default.
- W2128160147 crossrefType "journal-article" @default.
- W2128160147 hasAuthorship W2128160147A5006190733 @default.
- W2128160147 hasBestOaLocation W21281601472 @default.