Matches in SemOpenAlex for { <https://semopenalex.org/work/W2128164182> ?p ?o ?g. }
- W2128164182 endingPage "1282" @default.
- W2128164182 startingPage "1207" @default.
- W2128164182 abstract "This paper shows that quantum computation can be made fault-tolerant against errors and inaccuracies when $eta$, the probability for an error in a qubit or a gate, is smaller than a constant threshold $eta_c$. This result improves on Shor's result [Proceedings of the 37th Symposium on the Foundations of Computer Science, IEEE, Los Alamitos, CA, 1996, pp. 56–65], which shows how to perform fault-tolerant quantum computation when the error rate $eta$ decays polylogarithmically with the size of the computation, an assumption which is physically unreasonable. The cost of making the quantum circuit fault-tolerant in our construction is polylogarithmic in time and space. Our result holds for a very general local noise model, which includes probabilistic errors, decoherence, amplitude damping, depolarization, and systematic inaccuracies in the gates. Moreover, we allow exponentially decaying correlations between the errors both in space and in time. Fault-tolerant computation can be performed with any universal set of gates. The result also holds for quantum particles with $p>2$ states, namely, p-qudits, and is also generalized to one-dimensional quantum computers with only nearest-neighbor interactions. No measurements, or classical operations, are required during the quantum computation. We estimate the threshold of our construction to be $eta_csimeq 10^{-6}$, in the best case. By this we show that local noise is in principle not an obstacle for scalable quantum computation. The main ingredient of our proof is the computation on states encoded by a quantum error correcting code (QECC). To this end we introduce a special class of Calderbank–Shor–Steane (CSS) codes, called polynomial codes (the quantum analogue of Reed–Solomon codes). Their nice algebraic structure allows all of the encoded gates to be transversal. We also provide another version of the proof which uses more general CSS codes, but its encoded gates are slightly less elegant. To achieve fault tolerance, we encode the quantum circuit by another circuit by using one of these QECCs. This step is repeated polyloglog many times, each step slightly improving the effective error rate, to achieve the desired reliability. The resulting circuit exhibits a hierarchical structure, and for the analysis of its robustness we borrow terminology from Khalfin and Tsirelson [Found. Phys., 22 (1992), pp. 879–948] and Gács [Advances in Computing Research: A Research Annual: Randomness and Computation, JAI Press, Greenwich, CT, 1989]. The paper is to a large extent self-contained. In particular, we provide simpler proofs for many of the known results we use, such as the fact that it suffices to correct for bit-flips and phase-flips, the correctness of CSS codes, and the fact that two-qubit gates are universal, together with their extensions to higher-dimensional particles. We also provide full proofs of the universality of the sets of gates we use (the proof of universality was missing in Shor's paper). This paper thus provides a self-contained and complete proof of universal fault-tolerant quantum computation in the presence of local noise." @default.
- W2128164182 created "2016-06-24" @default.
- W2128164182 creator A5005794608 @default.
- W2128164182 creator A5007913595 @default.
- W2128164182 date "2008-01-01" @default.
- W2128164182 modified "2023-09-30" @default.
- W2128164182 title "Fault-Tolerant Quantum Computation with Constant Error Rate" @default.
- W2128164182 cites W1643360887 @default.
- W2128164182 cites W1677920491 @default.
- W2128164182 cites W1874981471 @default.
- W2128164182 cites W1967045838 @default.
- W2128164182 cites W1969246646 @default.
- W2128164182 cites W1973606897 @default.
- W2128164182 cites W1974123702 @default.
- W2128164182 cites W1975613092 @default.
- W2128164182 cites W1983312464 @default.
- W2128164182 cites W1985989979 @default.
- W2128164182 cites W1989538270 @default.
- W2128164182 cites W1993248778 @default.
- W2128164182 cites W1999706070 @default.
- W2128164182 cites W1999770545 @default.
- W2128164182 cites W2002598418 @default.
- W2128164182 cites W2004707744 @default.
- W2128164182 cites W2006290558 @default.
- W2128164182 cites W2007515425 @default.
- W2128164182 cites W2014633300 @default.
- W2128164182 cites W2015676876 @default.
- W2128164182 cites W2017964195 @default.
- W2128164182 cites W2018719845 @default.
- W2128164182 cites W2029568264 @default.
- W2128164182 cites W2042474962 @default.
- W2128164182 cites W2047036892 @default.
- W2128164182 cites W2049471987 @default.
- W2128164182 cites W2049913461 @default.
- W2128164182 cites W2051063637 @default.
- W2128164182 cites W2052895306 @default.
- W2128164182 cites W2056281570 @default.
- W2128164182 cites W2060887031 @default.
- W2128164182 cites W2079294297 @default.
- W2128164182 cites W2083019346 @default.
- W2128164182 cites W2087256203 @default.
- W2128164182 cites W2090163642 @default.
- W2128164182 cites W2102008187 @default.
- W2128164182 cites W2107050628 @default.
- W2128164182 cites W2116102644 @default.
- W2128164182 cites W2135273380 @default.
- W2128164182 cites W2139625432 @default.
- W2128164182 cites W2141420453 @default.
- W2128164182 cites W2148132004 @default.
- W2128164182 cites W2159566537 @default.
- W2128164182 cites W2159673235 @default.
- W2128164182 cites W2163440371 @default.
- W2128164182 cites W2167472672 @default.
- W2128164182 cites W2763302490 @default.
- W2128164182 cites W2951987143 @default.
- W2128164182 cites W3100206575 @default.
- W2128164182 cites W3100736866 @default.
- W2128164182 cites W3111297213 @default.
- W2128164182 cites W3216958049 @default.
- W2128164182 cites W4249266103 @default.
- W2128164182 cites W4295987789 @default.
- W2128164182 doi "https://doi.org/10.1137/s0097539799359385" @default.
- W2128164182 hasPublicationYear "2008" @default.
- W2128164182 type Work @default.
- W2128164182 sameAs 2128164182 @default.
- W2128164182 citedByCount "295" @default.
- W2128164182 countsByYear W21281641822012 @default.
- W2128164182 countsByYear W21281641822013 @default.
- W2128164182 countsByYear W21281641822014 @default.
- W2128164182 countsByYear W21281641822015 @default.
- W2128164182 countsByYear W21281641822016 @default.
- W2128164182 countsByYear W21281641822017 @default.
- W2128164182 countsByYear W21281641822018 @default.
- W2128164182 countsByYear W21281641822019 @default.
- W2128164182 countsByYear W21281641822020 @default.
- W2128164182 countsByYear W21281641822021 @default.
- W2128164182 countsByYear W21281641822022 @default.
- W2128164182 countsByYear W21281641822023 @default.
- W2128164182 crossrefType "journal-article" @default.
- W2128164182 hasAuthorship W2128164182A5005794608 @default.
- W2128164182 hasAuthorship W2128164182A5007913595 @default.
- W2128164182 hasBestOaLocation W21281641822 @default.
- W2128164182 hasConcept C11413529 @default.
- W2128164182 hasConcept C118615104 @default.
- W2128164182 hasConcept C121332964 @default.
- W2128164182 hasConcept C124148022 @default.
- W2128164182 hasConcept C137019171 @default.
- W2128164182 hasConcept C203087015 @default.
- W2128164182 hasConcept C33923547 @default.
- W2128164182 hasConcept C41008148 @default.
- W2128164182 hasConcept C45374587 @default.
- W2128164182 hasConcept C51003876 @default.
- W2128164182 hasConcept C58053490 @default.
- W2128164182 hasConcept C58849907 @default.
- W2128164182 hasConcept C62520636 @default.
- W2128164182 hasConcept C84114770 @default.
- W2128164182 hasConceptScore W2128164182C11413529 @default.
- W2128164182 hasConceptScore W2128164182C118615104 @default.