Matches in SemOpenAlex for { <https://semopenalex.org/work/W2128358762> ?p ?o ?g. }
- W2128358762 abstract "The world that we live in is a complex network of agents and their interactions which are termed as events. An instance of an event is composed of directly measurable low-level actions (which I term sub-events) having a temporal order. Also, the agents can act independently (e.g. voting) as well as collectively (e.g. scoring a touch-down in a football game) to perform an event. With the dawn of the new millennium, the low-level vision tasks such as segmentation, object classification, and tracking have become fairly robust. But a representational gap still exists between low-level measurements and high-level understanding of video sequences. This dissertation is an effort to bridge that gap where I propose novel learning, detection, representation, indexing and retrieval approaches for multi-agent events in videos. In order to achieve the goal of high-level understanding of videos, firstly, I apply statistical learning techniques to model the multiple agent events. For that purpose, I use the training videos to model the events by estimating the conditional dependencies between sub-events. Thus, given a video sequence, I track the people (heads and hand regions) and objects using a Meanshift tracker. An underlying rule-based system detects the sub-events using the tracked trajectories of the people and objects, based on their relative motion. Next, an event model is constructed by estimating the sub-event dependencies, that is, how frequently sub-event B occurs given that sub-event A has occurred. The advantages of such an event model are two-fold. First, I do not require prior knowledge of the number of agents involved in an event. Second, no assumptions are made about the length of an event. Secondly, after learning the event models, I detect events in a novel video by using graph clustering techniques. To that end, I construct a graph of temporally ordered sub-events occurring in the novel video. Next, using the learnt event model, I estimate a weight matrix of conditional dependencies between sub-events in the novel video. Further application of Normalized Cut (graph clustering technique) on the estimated weight matrix facilitate in detecting events in the novel video. The principal assumption made in this work is that the events are composed of highly correlated chains of sub-events that have high conditional dependency (association) within the cluster and relatively low conditional dependency (disassociation) between clusters. Thirdly, in order to represent the detected events, I propose an extension of CASE representation of natural languages. I extend CASE to allow the representation of temporal structure between sub-events. Also, in order to capture both multi-agent and multi-threaded events, I introduce a hierarchical CASE representation of events in terms of sub-events and case-lists. The essence of the proposition is that, based on the temporal relationships of the agent motions and a description of its state, it is possible to build a formal description of an event. Furthermore, I recognize the importance of representing the variations in the temporal order of sub-events, that may occur in an event, and encode the temporal probabilities directly into my event representation. The proposed extended representation with probabilistic temporal encoding is termed P-CASE that allows a plausible means of interface between users and the computer. Using the P-CASE representation I automatically encode the event ontology from training videos. This offers a significant advantage, since the domain experts do not have to go through the tedious task of determining the structure of events by browsing all the videos. Finally, I utilize the event representation for indexing and retrieval of events. Given the different instances of a particular event, I index the events using the P-CASE representation. Next, given a query in the P-CASE representation, event retrieval is performed using a two-level search. At the first level, a maximum likelihood estimate of the query event with the different indexed event models is computed. This provides the maximum matching event. At the second level, a matching score is obtained for all the event instances belonging to the maximum matched event model, using a weighted Jaccard similarity measure. Extensive experimentation was conducted for the detection, representation, indexing and retrieval of multiple agent events in videos of the meeting, surveillance, and railroad monitoring domains. To that end, the Semoran system was developed that takes in user inputs in any of the three forms for event retrieval: using pre-defined queries in P-CASE representation, using custom queries in P-CASE representation, or query by example video. The system then searches the entire database and returns the matched videos to the user. I used seven standard video datasets from the computer vision community as well as my own videos for testing the robustness of the proposed methods." @default.
- W2128358762 created "2016-06-24" @default.
- W2128358762 creator A5054670034 @default.
- W2128358762 creator A5080823547 @default.
- W2128358762 date "2007-01-01" @default.
- W2128358762 modified "2023-09-26" @default.
- W2128358762 title "Learning, detection, representation, indexing and retrieval of multi-agent events in videos" @default.
- W2128358762 cites W1482428446 @default.
- W2128358762 cites W1483100644 @default.
- W2128358762 cites W1492798374 @default.
- W2128358762 cites W152533846 @default.
- W2128358762 cites W1555805436 @default.
- W2128358762 cites W1559754312 @default.
- W2128358762 cites W1566933705 @default.
- W2128358762 cites W1571604258 @default.
- W2128358762 cites W1601567445 @default.
- W2128358762 cites W1896341954 @default.
- W2128358762 cites W1951966097 @default.
- W2128358762 cites W1988520084 @default.
- W2128358762 cites W1995903777 @default.
- W2128358762 cites W2015092869 @default.
- W2128358762 cites W2017602382 @default.
- W2128358762 cites W2020570654 @default.
- W2128358762 cites W2039107287 @default.
- W2128358762 cites W2084015864 @default.
- W2128358762 cites W2095653310 @default.
- W2128358762 cites W2096087251 @default.
- W2128358762 cites W2097089247 @default.
- W2128358762 cites W2098248342 @default.
- W2128358762 cites W2098517267 @default.
- W2128358762 cites W2102188949 @default.
- W2128358762 cites W2105257928 @default.
- W2128358762 cites W2109553605 @default.
- W2128358762 cites W2110619958 @default.
- W2128358762 cites W2115903268 @default.
- W2128358762 cites W2119171928 @default.
- W2128358762 cites W2120355408 @default.
- W2128358762 cites W2121947440 @default.
- W2128358762 cites W2124658620 @default.
- W2128358762 cites W2124660252 @default.
- W2128358762 cites W2125263419 @default.
- W2128358762 cites W2125854396 @default.
- W2128358762 cites W2127893047 @default.
- W2128358762 cites W2131768110 @default.
- W2128358762 cites W2132103241 @default.
- W2128358762 cites W2132914434 @default.
- W2128358762 cites W2134199742 @default.
- W2128358762 cites W2134266767 @default.
- W2128358762 cites W2134420355 @default.
- W2128358762 cites W2134685637 @default.
- W2128358762 cites W2135024229 @default.
- W2128358762 cites W2135285359 @default.
- W2128358762 cites W2136199085 @default.
- W2128358762 cites W2136585082 @default.
- W2128358762 cites W2138043589 @default.
- W2128358762 cites W2138375496 @default.
- W2128358762 cites W2140235142 @default.
- W2128358762 cites W2140877366 @default.
- W2128358762 cites W2143354173 @default.
- W2128358762 cites W2144761589 @default.
- W2128358762 cites W2145725688 @default.
- W2128358762 cites W2146289373 @default.
- W2128358762 cites W2146465143 @default.
- W2128358762 cites W2146688665 @default.
- W2128358762 cites W2148578241 @default.
- W2128358762 cites W2149613906 @default.
- W2128358762 cites W2149762924 @default.
- W2128358762 cites W2151206977 @default.
- W2128358762 cites W2155511848 @default.
- W2128358762 cites W2155728188 @default.
- W2128358762 cites W2160517719 @default.
- W2128358762 cites W2165013021 @default.
- W2128358762 cites W2165874398 @default.
- W2128358762 cites W2166428396 @default.
- W2128358762 cites W2293560592 @default.
- W2128358762 cites W2532535446 @default.
- W2128358762 cites W2600339340 @default.
- W2128358762 cites W2974222084 @default.
- W2128358762 hasPublicationYear "2007" @default.
- W2128358762 type Work @default.
- W2128358762 sameAs 2128358762 @default.
- W2128358762 citedByCount "1" @default.
- W2128358762 crossrefType "journal-article" @default.
- W2128358762 hasAuthorship W2128358762A5054670034 @default.
- W2128358762 hasAuthorship W2128358762A5080823547 @default.
- W2128358762 hasConcept C119857082 @default.
- W2128358762 hasConcept C121332964 @default.
- W2128358762 hasConcept C154945302 @default.
- W2128358762 hasConcept C17744445 @default.
- W2128358762 hasConcept C199539241 @default.
- W2128358762 hasConcept C2776359362 @default.
- W2128358762 hasConcept C2779662365 @default.
- W2128358762 hasConcept C2781238097 @default.
- W2128358762 hasConcept C41008148 @default.
- W2128358762 hasConcept C520049643 @default.
- W2128358762 hasConcept C62520636 @default.
- W2128358762 hasConcept C75165309 @default.
- W2128358762 hasConcept C89600930 @default.
- W2128358762 hasConcept C94625758 @default.
- W2128358762 hasConceptScore W2128358762C119857082 @default.