Matches in SemOpenAlex for { <https://semopenalex.org/work/W2128367023> ?p ?o ?g. }
- W2128367023 endingPage "2586" @default.
- W2128367023 startingPage "2548" @default.
- W2128367023 abstract "Information encoding in the nervous system is supported through the precise spike timings of neurons; however, an understanding of the underlying processes by which such representations are formed in the first place remains an open question. Here we examine how multilayered networks of spiking neurons can learn to encode for input patterns using a fully temporal coding scheme. To this end, we introduce a new supervised learning rule, MultilayerSpiker, that can train spiking networks containing hidden layer neurons to perform transformations between spatiotemporal input and output spike patterns. The performance of the proposed learning rule is demonstrated in terms of the number of pattern mappings it can learn, the complexity of network structures it can be used on, and its classification accuracy when using multispike-based encodings. In particular, the learning rule displays robustness against input noise and can generalize well on an example data set. Our approach contributes to both a systematic understanding of how computations might take place in the nervous system and a learning rule that displays strong technical capability." @default.
- W2128367023 created "2016-06-24" @default.
- W2128367023 creator A5000938110 @default.
- W2128367023 creator A5039950769 @default.
- W2128367023 creator A5048603303 @default.
- W2128367023 date "2015-12-01" @default.
- W2128367023 modified "2023-10-13" @default.
- W2128367023 title "Learning Spatiotemporally Encoded Pattern Transformations in Structured Spiking Neural Networks" @default.
- W2128367023 cites W101771737 @default.
- W2128367023 cites W1484004770 @default.
- W2128367023 cites W1486480929 @default.
- W2128367023 cites W1514853588 @default.
- W2128367023 cites W1516529420 @default.
- W2128367023 cites W1937233719 @default.
- W2128367023 cites W1965678517 @default.
- W2128367023 cites W1966767762 @default.
- W2128367023 cites W1983624302 @default.
- W2128367023 cites W198407089 @default.
- W2128367023 cites W1990221069 @default.
- W2128367023 cites W2001218774 @default.
- W2128367023 cites W2001465022 @default.
- W2128367023 cites W2002679708 @default.
- W2128367023 cites W2012704126 @default.
- W2128367023 cites W2020539709 @default.
- W2128367023 cites W2024152195 @default.
- W2128367023 cites W2054113233 @default.
- W2128367023 cites W2061043032 @default.
- W2128367023 cites W2061341428 @default.
- W2128367023 cites W2061897041 @default.
- W2128367023 cites W2069873783 @default.
- W2128367023 cites W2092670027 @default.
- W2128367023 cites W2093002383 @default.
- W2128367023 cites W2103594871 @default.
- W2128367023 cites W2107433900 @default.
- W2128367023 cites W2109234859 @default.
- W2128367023 cites W2111562869 @default.
- W2128367023 cites W2113545762 @default.
- W2128367023 cites W2115831804 @default.
- W2128367023 cites W2117726420 @default.
- W2128367023 cites W2126404188 @default.
- W2128367023 cites W2126449078 @default.
- W2128367023 cites W2128432504 @default.
- W2128367023 cites W2131215403 @default.
- W2128367023 cites W2147101007 @default.
- W2128367023 cites W2154616847 @default.
- W2128367023 cites W2160361560 @default.
- W2128367023 cites W2165639766 @default.
- W2128367023 cites W2168213284 @default.
- W2128367023 cites W2171236529 @default.
- W2128367023 cites W2171746688 @default.
- W2128367023 cites W2569813014 @default.
- W2128367023 cites W4238614602 @default.
- W2128367023 cites W4323913440 @default.
- W2128367023 doi "https://doi.org/10.1162/neco_a_00790" @default.
- W2128367023 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26496039" @default.
- W2128367023 hasPublicationYear "2015" @default.
- W2128367023 type Work @default.
- W2128367023 sameAs 2128367023 @default.
- W2128367023 citedByCount "36" @default.
- W2128367023 countsByYear W21283670232016 @default.
- W2128367023 countsByYear W21283670232017 @default.
- W2128367023 countsByYear W21283670232018 @default.
- W2128367023 countsByYear W21283670232019 @default.
- W2128367023 countsByYear W21283670232020 @default.
- W2128367023 countsByYear W21283670232021 @default.
- W2128367023 countsByYear W21283670232022 @default.
- W2128367023 countsByYear W21283670232023 @default.
- W2128367023 crossrefType "journal-article" @default.
- W2128367023 hasAuthorship W2128367023A5000938110 @default.
- W2128367023 hasAuthorship W2128367023A5039950769 @default.
- W2128367023 hasAuthorship W2128367023A5048603303 @default.
- W2128367023 hasBestOaLocation W21283670232 @default.
- W2128367023 hasConcept C104317684 @default.
- W2128367023 hasConcept C105795698 @default.
- W2128367023 hasConcept C115903868 @default.
- W2128367023 hasConcept C11731999 @default.
- W2128367023 hasConcept C119857082 @default.
- W2128367023 hasConcept C125411270 @default.
- W2128367023 hasConcept C153180895 @default.
- W2128367023 hasConcept C154945302 @default.
- W2128367023 hasConcept C177264268 @default.
- W2128367023 hasConcept C179518139 @default.
- W2128367023 hasConcept C185592680 @default.
- W2128367023 hasConcept C199360897 @default.
- W2128367023 hasConcept C2779127903 @default.
- W2128367023 hasConcept C2781390188 @default.
- W2128367023 hasConcept C2909946758 @default.
- W2128367023 hasConcept C33923547 @default.
- W2128367023 hasConcept C3832189 @default.
- W2128367023 hasConcept C41008148 @default.
- W2128367023 hasConcept C50644808 @default.
- W2128367023 hasConcept C55493867 @default.
- W2128367023 hasConcept C63479239 @default.
- W2128367023 hasConcept C66746571 @default.
- W2128367023 hasConcept C77637269 @default.
- W2128367023 hasConceptScore W2128367023C104317684 @default.
- W2128367023 hasConceptScore W2128367023C105795698 @default.
- W2128367023 hasConceptScore W2128367023C115903868 @default.