Matches in SemOpenAlex for { <https://semopenalex.org/work/W2128412032> ?p ?o ?g. }
- W2128412032 abstract "Genomic prediction of breeding values from dense single nucleotide polymorphisms (SNP) genotypes is used for livestock and crop breeding, and can also be used to predict disease risk in humans. For some traits, the most accurate genomic predictions are achieved with non-linear estimates of SNP effects from Bayesian methods that treat SNP effects as random effects from a heavy tailed prior distribution. These Bayesian methods are usually implemented via Markov chain Monte Carlo (MCMC) schemes to sample from the posterior distribution of SNP effects, which is computationally expensive. Our aim was to develop an efficient expectation–maximisation algorithm (emBayesR) that gives similar estimates of SNP effects and accuracies of genomic prediction than the MCMC implementation of BayesR (a Bayesian method for genomic prediction), but with greatly reduced computation time. emBayesR is an approximate EM algorithm that retains the BayesR model assumption with SNP effects sampled from a mixture of normal distributions with increasing variance. emBayesR differs from other proposed non-MCMC implementations of Bayesian methods for genomic prediction in that it estimates the effect of each SNP while allowing for the error associated with estimation of all other SNP effects. emBayesR was compared to BayesR using simulated data, and real dairy cattle data with 632 003 SNPs genotyped, to determine if the MCMC and the expectation-maximisation approaches give similar accuracies of genomic prediction. We were able to demonstrate that allowing for the error associated with estimation of other SNP effects when estimating the effect of each SNP in emBayesR improved the accuracy of genomic prediction over emBayesR without including this error correction, with both simulated and real data. When averaged over nine dairy traits, the accuracy of genomic prediction with emBayesR was only 0.5% lower than that from BayesR. However, emBayesR reduced computing time up to 8-fold compared to BayesR. The emBayesR algorithm described here achieved similar accuracies of genomic prediction to BayesR for a range of simulated and real 630 K dairy SNP data. emBayesR needs less computing time than BayesR, which will allow it to be applied to larger datasets." @default.
- W2128412032 created "2016-06-24" @default.
- W2128412032 creator A5051244777 @default.
- W2128412032 creator A5058907257 @default.
- W2128412032 creator A5059130096 @default.
- W2128412032 creator A5063038462 @default.
- W2128412032 creator A5067510810 @default.
- W2128412032 creator A5089956650 @default.
- W2128412032 date "2015-04-30" @default.
- W2128412032 modified "2023-10-11" @default.
- W2128412032 title "A computationally efficient algorithm for genomic prediction using a Bayesian model" @default.
- W2128412032 cites W1928998639 @default.
- W2128412032 cites W1970459140 @default.
- W2128412032 cites W1971186146 @default.
- W2128412032 cites W1982652137 @default.
- W2128412032 cites W1989943831 @default.
- W2128412032 cites W2004894806 @default.
- W2128412032 cites W2027514193 @default.
- W2128412032 cites W2032428058 @default.
- W2128412032 cites W2034846276 @default.
- W2128412032 cites W2041000916 @default.
- W2128412032 cites W2059542829 @default.
- W2128412032 cites W2060447029 @default.
- W2128412032 cites W2067715889 @default.
- W2128412032 cites W2074516786 @default.
- W2128412032 cites W2077946779 @default.
- W2128412032 cites W2088796387 @default.
- W2128412032 cites W2098381128 @default.
- W2128412032 cites W2107289228 @default.
- W2128412032 cites W2114044285 @default.
- W2128412032 cites W2118777669 @default.
- W2128412032 cites W2119372134 @default.
- W2128412032 cites W2124142797 @default.
- W2128412032 cites W2132501280 @default.
- W2128412032 cites W2142220815 @default.
- W2128412032 cites W2147809205 @default.
- W2128412032 cites W2148419603 @default.
- W2128412032 cites W2148536112 @default.
- W2128412032 cites W2151802683 @default.
- W2128412032 cites W2154670965 @default.
- W2128412032 cites W2155496693 @default.
- W2128412032 cites W2159349760 @default.
- W2128412032 cites W2159365565 @default.
- W2128412032 cites W2160819071 @default.
- W2128412032 cites W2161831898 @default.
- W2128412032 cites W2164545188 @default.
- W2128412032 cites W2170554520 @default.
- W2128412032 cites W2172258339 @default.
- W2128412032 cites W2238355159 @default.
- W2128412032 doi "https://doi.org/10.1186/s12711-014-0082-4" @default.
- W2128412032 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4415253" @default.
- W2128412032 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25926276" @default.
- W2128412032 hasPublicationYear "2015" @default.
- W2128412032 type Work @default.
- W2128412032 sameAs 2128412032 @default.
- W2128412032 citedByCount "21" @default.
- W2128412032 countsByYear W21284120322016 @default.
- W2128412032 countsByYear W21284120322017 @default.
- W2128412032 countsByYear W21284120322018 @default.
- W2128412032 countsByYear W21284120322019 @default.
- W2128412032 countsByYear W21284120322020 @default.
- W2128412032 countsByYear W21284120322021 @default.
- W2128412032 countsByYear W21284120322022 @default.
- W2128412032 countsByYear W21284120322023 @default.
- W2128412032 crossrefType "journal-article" @default.
- W2128412032 hasAuthorship W2128412032A5051244777 @default.
- W2128412032 hasAuthorship W2128412032A5058907257 @default.
- W2128412032 hasAuthorship W2128412032A5059130096 @default.
- W2128412032 hasAuthorship W2128412032A5063038462 @default.
- W2128412032 hasAuthorship W2128412032A5067510810 @default.
- W2128412032 hasAuthorship W2128412032A5089956650 @default.
- W2128412032 hasBestOaLocation W21284120321 @default.
- W2128412032 hasConcept C104317684 @default.
- W2128412032 hasConcept C105795698 @default.
- W2128412032 hasConcept C107673813 @default.
- W2128412032 hasConcept C111350023 @default.
- W2128412032 hasConcept C11413529 @default.
- W2128412032 hasConcept C135763542 @default.
- W2128412032 hasConcept C139275648 @default.
- W2128412032 hasConcept C153209595 @default.
- W2128412032 hasConcept C177769412 @default.
- W2128412032 hasConcept C207201462 @default.
- W2128412032 hasConcept C33923547 @default.
- W2128412032 hasConcept C41008148 @default.
- W2128412032 hasConcept C54355233 @default.
- W2128412032 hasConcept C57830394 @default.
- W2128412032 hasConcept C70721500 @default.
- W2128412032 hasConcept C86803240 @default.
- W2128412032 hasConceptScore W2128412032C104317684 @default.
- W2128412032 hasConceptScore W2128412032C105795698 @default.
- W2128412032 hasConceptScore W2128412032C107673813 @default.
- W2128412032 hasConceptScore W2128412032C111350023 @default.
- W2128412032 hasConceptScore W2128412032C11413529 @default.
- W2128412032 hasConceptScore W2128412032C135763542 @default.
- W2128412032 hasConceptScore W2128412032C139275648 @default.
- W2128412032 hasConceptScore W2128412032C153209595 @default.
- W2128412032 hasConceptScore W2128412032C177769412 @default.
- W2128412032 hasConceptScore W2128412032C207201462 @default.
- W2128412032 hasConceptScore W2128412032C33923547 @default.
- W2128412032 hasConceptScore W2128412032C41008148 @default.