Matches in SemOpenAlex for { <https://semopenalex.org/work/W2128592536> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2128592536 endingPage "1105" @default.
- W2128592536 startingPage "1098" @default.
- W2128592536 abstract "The performance of a large scale biometric system may deteriorate over time as new individuals are continually enrolled. To maintain an acceptable level of performance, the classifier has to be re-trained offline in batch mode using both existing and new data. The process of re-training can be computationally expensive and time consuming. This paper presents a new biometric classifier update algorithm that incrementally re-trains the classifier using online learning and progressively establishes a decision hyperplane for improved classification. The proposed algorithm incorporates soft labels and granular computing in the formulation of a 2ν-Online Granular Soft Support Vector Machine (SVM) to re-train the classifier using only the new data. Granular computing makes it adaptive to local and global variations in data distribution, while soft labels provide resilience to noise. Each time data is acquired, new support vectors that are linearly independent are added and existing support vectors that do not improve the classifier performance are removed. This constrains the size of the support vectors and significantly reduces the training time without compromising the classification accuracy. The efficacy of the proposed online learning strategy is validated in a near infrared face verification application involving different covariates. The results obtained on a heterogeneous near infrared face database of 328 subjects show that in all experiments using different feature extraction and classification algorithms the proposed online 2ν-Granular Soft Support Vector Machine learning approach is 2–3 times faster while achieving a high level of accuracy similar to offline training using all data." @default.
- W2128592536 created "2016-06-24" @default.
- W2128592536 creator A5032002504 @default.
- W2128592536 creator A5050320880 @default.
- W2128592536 creator A5050521702 @default.
- W2128592536 creator A5061834795 @default.
- W2128592536 date "2010-07-01" @default.
- W2128592536 modified "2023-09-27" @default.
- W2128592536 title "Biometric classifier update using online learning: A case study in near infrared face verification" @default.
- W2128592536 cites W1988311035 @default.
- W2128592536 cites W1989702938 @default.
- W2128592536 cites W2010209470 @default.
- W2128592536 cites W2041597619 @default.
- W2128592536 cites W2055639053 @default.
- W2128592536 cites W2061710350 @default.
- W2128592536 cites W2091780211 @default.
- W2128592536 cites W2099854653 @default.
- W2128592536 cites W2126074213 @default.
- W2128592536 cites W2130053367 @default.
- W2128592536 cites W2134262590 @default.
- W2128592536 cites W2138451337 @default.
- W2128592536 cites W2150621701 @default.
- W2128592536 cites W2152565110 @default.
- W2128592536 cites W2534230712 @default.
- W2128592536 cites W4249601105 @default.
- W2128592536 doi "https://doi.org/10.1016/j.imavis.2010.01.009" @default.
- W2128592536 hasPublicationYear "2010" @default.
- W2128592536 type Work @default.
- W2128592536 sameAs 2128592536 @default.
- W2128592536 citedByCount "24" @default.
- W2128592536 countsByYear W21285925362013 @default.
- W2128592536 countsByYear W21285925362014 @default.
- W2128592536 countsByYear W21285925362015 @default.
- W2128592536 countsByYear W21285925362016 @default.
- W2128592536 countsByYear W21285925362017 @default.
- W2128592536 countsByYear W21285925362019 @default.
- W2128592536 countsByYear W21285925362020 @default.
- W2128592536 crossrefType "journal-article" @default.
- W2128592536 hasAuthorship W2128592536A5032002504 @default.
- W2128592536 hasAuthorship W2128592536A5050320880 @default.
- W2128592536 hasAuthorship W2128592536A5050521702 @default.
- W2128592536 hasAuthorship W2128592536A5061834795 @default.
- W2128592536 hasConcept C119857082 @default.
- W2128592536 hasConcept C12267149 @default.
- W2128592536 hasConcept C153180895 @default.
- W2128592536 hasConcept C154945302 @default.
- W2128592536 hasConcept C173102733 @default.
- W2128592536 hasConcept C184297639 @default.
- W2128592536 hasConcept C31510193 @default.
- W2128592536 hasConcept C41008148 @default.
- W2128592536 hasConcept C95623464 @default.
- W2128592536 hasConceptScore W2128592536C119857082 @default.
- W2128592536 hasConceptScore W2128592536C12267149 @default.
- W2128592536 hasConceptScore W2128592536C153180895 @default.
- W2128592536 hasConceptScore W2128592536C154945302 @default.
- W2128592536 hasConceptScore W2128592536C173102733 @default.
- W2128592536 hasConceptScore W2128592536C184297639 @default.
- W2128592536 hasConceptScore W2128592536C31510193 @default.
- W2128592536 hasConceptScore W2128592536C41008148 @default.
- W2128592536 hasConceptScore W2128592536C95623464 @default.
- W2128592536 hasIssue "7" @default.
- W2128592536 hasLocation W21285925361 @default.
- W2128592536 hasOpenAccess W2128592536 @default.
- W2128592536 hasPrimaryLocation W21285925361 @default.
- W2128592536 hasRelatedWork W1510248489 @default.
- W2128592536 hasRelatedWork W2041636156 @default.
- W2128592536 hasRelatedWork W2101819884 @default.
- W2128592536 hasRelatedWork W2160451891 @default.
- W2128592536 hasRelatedWork W2368987896 @default.
- W2128592536 hasRelatedWork W2371712871 @default.
- W2128592536 hasRelatedWork W2921036759 @default.
- W2128592536 hasRelatedWork W2951312798 @default.
- W2128592536 hasRelatedWork W2187500075 @default.
- W2128592536 hasRelatedWork W3158004940 @default.
- W2128592536 hasVolume "28" @default.
- W2128592536 isParatext "false" @default.
- W2128592536 isRetracted "false" @default.
- W2128592536 magId "2128592536" @default.
- W2128592536 workType "article" @default.