Matches in SemOpenAlex for { <https://semopenalex.org/work/W2128655103> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2128655103 endingPage "3233" @default.
- W2128655103 startingPage "3231" @default.
- W2128655103 abstract "With the widespread availability of high-throughput experimental technologies it has become possible to study hundreds to thousands of cellular factors simultaneously, such as coding- or non-coding mRNA or protein concentrations. Still, extracting information about the underlying regulatory or signaling interactions from these data remains a difficult challenge. We present a flexible approach towards network inference based on linear programming. Our method reconstructs the interactions of factors from a combination of perturbation/non-perturbation and steady-state/time-series data. We show both on simulated and real data that our methods are able to reconstruct the underlying networks fast and efficiently, thus shedding new light on biological processes and, in particular, into disease's mechanisms of action. We have implemented the approach as an R package available through bioconductor.This R package is freely available under the Gnu Public License (GPL-3) from bioconductor.org (http://bioconductor.org/packages/release/bioc/html/lpNet.html) and is compatible with most operating systems (Windows, Linux, Mac OS) and hardware architectures.bettina.knapp@helmholtz-muenchen.deSupplementary data are available at Bioinformatics online." @default.
- W2128655103 created "2016-06-24" @default.
- W2128655103 creator A5003600284 @default.
- W2128655103 creator A5039772739 @default.
- W2128655103 creator A5049849598 @default.
- W2128655103 date "2015-05-29" @default.
- W2128655103 modified "2023-09-26" @default.
- W2128655103 title "lpNet: a linear programming approach to reconstruct signal transduction networks" @default.
- W2128655103 cites W1999922265 @default.
- W2128655103 cites W2046675213 @default.
- W2128655103 cites W2054477434 @default.
- W2128655103 cites W2073307618 @default.
- W2128655103 cites W2076372398 @default.
- W2128655103 cites W2101344115 @default.
- W2128655103 cites W2115620023 @default.
- W2128655103 cites W2115813074 @default.
- W2128655103 cites W2124876377 @default.
- W2128655103 cites W2125854229 @default.
- W2128655103 cites W2155087336 @default.
- W2128655103 cites W2611370172 @default.
- W2128655103 doi "https://doi.org/10.1093/bioinformatics/btv327" @default.
- W2128655103 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26026168" @default.
- W2128655103 hasPublicationYear "2015" @default.
- W2128655103 type Work @default.
- W2128655103 sameAs 2128655103 @default.
- W2128655103 citedByCount "3" @default.
- W2128655103 countsByYear W21286551032015 @default.
- W2128655103 countsByYear W21286551032016 @default.
- W2128655103 countsByYear W21286551032019 @default.
- W2128655103 crossrefType "journal-article" @default.
- W2128655103 hasAuthorship W2128655103A5003600284 @default.
- W2128655103 hasAuthorship W2128655103A5039772739 @default.
- W2128655103 hasAuthorship W2128655103A5049849598 @default.
- W2128655103 hasConcept C104317684 @default.
- W2128655103 hasConcept C105795698 @default.
- W2128655103 hasConcept C124101348 @default.
- W2128655103 hasConcept C154945302 @default.
- W2128655103 hasConcept C179518139 @default.
- W2128655103 hasConcept C199360897 @default.
- W2128655103 hasConcept C2776214188 @default.
- W2128655103 hasConcept C2779694297 @default.
- W2128655103 hasConcept C2984074130 @default.
- W2128655103 hasConcept C33923547 @default.
- W2128655103 hasConcept C41008148 @default.
- W2128655103 hasConcept C55493867 @default.
- W2128655103 hasConcept C86803240 @default.
- W2128655103 hasConceptScore W2128655103C104317684 @default.
- W2128655103 hasConceptScore W2128655103C105795698 @default.
- W2128655103 hasConceptScore W2128655103C124101348 @default.
- W2128655103 hasConceptScore W2128655103C154945302 @default.
- W2128655103 hasConceptScore W2128655103C179518139 @default.
- W2128655103 hasConceptScore W2128655103C199360897 @default.
- W2128655103 hasConceptScore W2128655103C2776214188 @default.
- W2128655103 hasConceptScore W2128655103C2779694297 @default.
- W2128655103 hasConceptScore W2128655103C2984074130 @default.
- W2128655103 hasConceptScore W2128655103C33923547 @default.
- W2128655103 hasConceptScore W2128655103C41008148 @default.
- W2128655103 hasConceptScore W2128655103C55493867 @default.
- W2128655103 hasConceptScore W2128655103C86803240 @default.
- W2128655103 hasIssue "19" @default.
- W2128655103 hasLocation W21286551031 @default.
- W2128655103 hasLocation W21286551032 @default.
- W2128655103 hasOpenAccess W2128655103 @default.
- W2128655103 hasPrimaryLocation W21286551031 @default.
- W2128655103 hasRelatedWork W1863819094 @default.
- W2128655103 hasRelatedWork W2099796294 @default.
- W2128655103 hasRelatedWork W2114973294 @default.
- W2128655103 hasRelatedWork W2157593856 @default.
- W2128655103 hasRelatedWork W2166140491 @default.
- W2128655103 hasRelatedWork W2207661154 @default.
- W2128655103 hasRelatedWork W2792211508 @default.
- W2128655103 hasRelatedWork W2987032426 @default.
- W2128655103 hasRelatedWork W3201755985 @default.
- W2128655103 hasRelatedWork W1926376776 @default.
- W2128655103 hasVolume "31" @default.
- W2128655103 isParatext "false" @default.
- W2128655103 isRetracted "false" @default.
- W2128655103 magId "2128655103" @default.
- W2128655103 workType "article" @default.