Matches in SemOpenAlex for { <https://semopenalex.org/work/W2128839442> ?p ?o ?g. }
- W2128839442 endingPage "252" @default.
- W2128839442 startingPage "235" @default.
- W2128839442 abstract "Ecologists often fit models to survey data to estimate and explain variation in animal abundance. Such models typically require that animal density remains constant across the landscape where sampling is being conducted, a potentially problematic assumption for animals inhabiting dynamic landscapes or otherwise exhibiting considerable spatiotemporal variation in density. We review several concepts from the burgeoning literature on spatiotemporal statistical models, including the nature of the temporal structure (i.e., descriptive or dynamical) and strategies for dimension reduction to promote computational tractability. We also review several features as they specifically relate to abundance estimation, including boundary conditions, population closure, choice of link function, and extrapolation of predicted relationships to unsampled areas. We then compare a suite of novel and existing spatiotemporal hierarchical models for animal count data that permit animal density to vary over space and time, including formulations motivated by resource selection and allowing for closed populations. We gauge the relative performance (bias, precision, computational demands) of alternative spatiotemporal models when confronted with simulated and real data sets from dynamic animal populations. For the latter, we analyze spotted seal (Phoca largha) counts from an aerial survey of the Bering Sea where the quantity and quality of suitable habitat (sea ice) changed dramatically while surveys were being conducted. Simulation analyses suggested that multiple types of spatiotemporal models provide reasonable inference (low positive bias, high precision) about animal abundance, but have potential for overestimating precision. Analysis of spotted seal data indicated that several model formulations, including those based on a log-Gaussian Cox process, had a tendency to overestimate abundance. By contrast, a model that included a population closure assumption and a scale prior on total abundance produced estimates that largely conformed to our a priori expectation. Although care must be taken to tailor models to match the study population and survey data available, we argue that hierarchical spatiotemporal statistical models represent a powerful way forward for estimating abundance and explaining variation in the distribution of dynamical populations." @default.
- W2128839442 created "2016-06-24" @default.
- W2128839442 creator A5007167892 @default.
- W2128839442 creator A5020162202 @default.
- W2128839442 creator A5031748419 @default.
- W2128839442 creator A5031913902 @default.
- W2128839442 creator A5067194075 @default.
- W2128839442 creator A5082476482 @default.
- W2128839442 date "2015-05-01" @default.
- W2128839442 modified "2023-10-16" @default.
- W2128839442 title "Using spatiotemporal statistical models to estimate animal abundance and infer ecological dynamics from survey counts" @default.
- W2128839442 cites W109690219 @default.
- W2128839442 cites W1520585082 @default.
- W2128839442 cites W1603903339 @default.
- W2128839442 cites W1906551997 @default.
- W2128839442 cites W1963783872 @default.
- W2128839442 cites W1973362783 @default.
- W2128839442 cites W1983071921 @default.
- W2128839442 cites W1984536023 @default.
- W2128839442 cites W1992597527 @default.
- W2128839442 cites W1993897679 @default.
- W2128839442 cites W1997457897 @default.
- W2128839442 cites W2000812278 @default.
- W2128839442 cites W2004807582 @default.
- W2128839442 cites W2012327117 @default.
- W2128839442 cites W2012522536 @default.
- W2128839442 cites W2045103429 @default.
- W2128839442 cites W2048776980 @default.
- W2128839442 cites W2049633694 @default.
- W2128839442 cites W2050963821 @default.
- W2128839442 cites W2051363309 @default.
- W2128839442 cites W2057030083 @default.
- W2128839442 cites W2069993596 @default.
- W2128839442 cites W2072104634 @default.
- W2128839442 cites W2077111079 @default.
- W2128839442 cites W2087217992 @default.
- W2128839442 cites W2092171156 @default.
- W2128839442 cites W2097601813 @default.
- W2128839442 cites W2099288755 @default.
- W2128839442 cites W2099337390 @default.
- W2128839442 cites W2103716705 @default.
- W2128839442 cites W2104018362 @default.
- W2128839442 cites W2104460116 @default.
- W2128839442 cites W2107182127 @default.
- W2128839442 cites W2111111567 @default.
- W2128839442 cites W2120112281 @default.
- W2128839442 cites W2123337039 @default.
- W2128839442 cites W2124753386 @default.
- W2128839442 cites W2152135597 @default.
- W2128839442 cites W2155792533 @default.
- W2128839442 cites W2167360447 @default.
- W2128839442 cites W2174961667 @default.
- W2128839442 cites W2178965634 @default.
- W2128839442 cites W2314945980 @default.
- W2128839442 doi "https://doi.org/10.1890/14-0959.1" @default.
- W2128839442 hasPublicationYear "2015" @default.
- W2128839442 type Work @default.
- W2128839442 sameAs 2128839442 @default.
- W2128839442 citedByCount "38" @default.
- W2128839442 countsByYear W21288394422015 @default.
- W2128839442 countsByYear W21288394422016 @default.
- W2128839442 countsByYear W21288394422017 @default.
- W2128839442 countsByYear W21288394422018 @default.
- W2128839442 countsByYear W21288394422019 @default.
- W2128839442 countsByYear W21288394422020 @default.
- W2128839442 countsByYear W21288394422021 @default.
- W2128839442 countsByYear W21288394422022 @default.
- W2128839442 countsByYear W21288394422023 @default.
- W2128839442 crossrefType "journal-article" @default.
- W2128839442 hasAuthorship W2128839442A5007167892 @default.
- W2128839442 hasAuthorship W2128839442A5020162202 @default.
- W2128839442 hasAuthorship W2128839442A5031748419 @default.
- W2128839442 hasAuthorship W2128839442A5031913902 @default.
- W2128839442 hasAuthorship W2128839442A5067194075 @default.
- W2128839442 hasAuthorship W2128839442A5082476482 @default.
- W2128839442 hasConcept C100906024 @default.
- W2128839442 hasConcept C105795698 @default.
- W2128839442 hasConcept C144024400 @default.
- W2128839442 hasConcept C149923435 @default.
- W2128839442 hasConcept C154945302 @default.
- W2128839442 hasConcept C18903297 @default.
- W2128839442 hasConcept C2776214188 @default.
- W2128839442 hasConcept C2908647359 @default.
- W2128839442 hasConcept C33643355 @default.
- W2128839442 hasConcept C33923547 @default.
- W2128839442 hasConcept C41008148 @default.
- W2128839442 hasConcept C77077793 @default.
- W2128839442 hasConcept C86803240 @default.
- W2128839442 hasConceptScore W2128839442C100906024 @default.
- W2128839442 hasConceptScore W2128839442C105795698 @default.
- W2128839442 hasConceptScore W2128839442C144024400 @default.
- W2128839442 hasConceptScore W2128839442C149923435 @default.
- W2128839442 hasConceptScore W2128839442C154945302 @default.
- W2128839442 hasConceptScore W2128839442C18903297 @default.
- W2128839442 hasConceptScore W2128839442C2776214188 @default.
- W2128839442 hasConceptScore W2128839442C2908647359 @default.
- W2128839442 hasConceptScore W2128839442C33643355 @default.
- W2128839442 hasConceptScore W2128839442C33923547 @default.