Matches in SemOpenAlex for { <https://semopenalex.org/work/W2128889245> ?p ?o ?g. }
- W2128889245 endingPage "58" @default.
- W2128889245 startingPage "1" @default.
- W2128889245 abstract "Motivated by the unceasing interest in hidden Markov models (HMMs), this paper reexamines hidden path inference in these models, using primarily a risk-based framework. While the most common maximum a posteriori (MAP), or Viterbi, path estimator and the minimum error, or Posterior Decoder (PD) have long been around, other path estimators, or decoders, have been either only hinted at or applied more recently and in dedicated applications generally unfamiliar to the statistical learning community. Over a decade ago, however, a family of algorithmically defined decoders aiming to hybridize the two standard ones was proposed elsewhere. The present paper gives a careful analysis of this hybridization approach, identifies several problems and issues with it and other previously proposed approaches, and proposes practical resolutions of those. Furthermore, simple modifications of the classical criteria for hidden path recognition are shown to lead to a new class of decoders. Dynamic programming algorithms to compute these decoders in the usual forward-backward manner are presented. A particularly interesting subclass of such estimators can be also viewed as hybrids of the MAP and PD estimators. Similar to previously proposed MAP-PD hybrids, the new class is parameterized by a small number of tunable parameters. Unlike their algorithmic predecessors, the new risk-based decoders are more clearly interpretable, and, most importantly, work out-of-the box in practice, which is demonstrated on some real bioinformatics tasks and data. Some further generalizations and applications are discussed in the conclusion." @default.
- W2128889245 created "2016-06-24" @default.
- W2128889245 creator A5060111294 @default.
- W2128889245 creator A5079016144 @default.
- W2128889245 date "2014-01-01" @default.
- W2128889245 modified "2023-09-23" @default.
- W2128889245 title "Bridging Viterbi and posterior decoding: a generalized risk approach to hidden path inference based on hidden Markov models" @default.
- W2128889245 cites W1499594845 @default.
- W2128889245 cites W1506806321 @default.
- W2128889245 cites W1508165687 @default.
- W2128889245 cites W1511268987 @default.
- W2128889245 cites W1531905615 @default.
- W2128889245 cites W1531980754 @default.
- W2128889245 cites W1534925464 @default.
- W2128889245 cites W1536837046 @default.
- W2128889245 cites W1554544485 @default.
- W2128889245 cites W1556573183 @default.
- W2128889245 cites W1558136956 @default.
- W2128889245 cites W1560013842 @default.
- W2128889245 cites W1574901103 @default.
- W2128889245 cites W1606770439 @default.
- W2128889245 cites W1663973292 @default.
- W2128889245 cites W1758266623 @default.
- W2128889245 cites W184688996 @default.
- W2128889245 cites W18553681 @default.
- W2128889245 cites W1883186006 @default.
- W2128889245 cites W1968149043 @default.
- W2128889245 cites W1988506022 @default.
- W2128889245 cites W1990005915 @default.
- W2128889245 cites W1991133427 @default.
- W2128889245 cites W1991566301 @default.
- W2128889245 cites W1992514840 @default.
- W2128889245 cites W1997721464 @default.
- W2128889245 cites W2006631576 @default.
- W2128889245 cites W2009570821 @default.
- W2128889245 cites W2017675162 @default.
- W2128889245 cites W2020999234 @default.
- W2128889245 cites W2023154499 @default.
- W2128889245 cites W2031044178 @default.
- W2128889245 cites W2038698865 @default.
- W2128889245 cites W2040359425 @default.
- W2128889245 cites W2045407304 @default.
- W2128889245 cites W2049283139 @default.
- W2128889245 cites W2054287017 @default.
- W2128889245 cites W2055043387 @default.
- W2128889245 cites W2082418604 @default.
- W2128889245 cites W2082437395 @default.
- W2128889245 cites W2085684972 @default.
- W2128889245 cites W2087284982 @default.
- W2128889245 cites W2087894810 @default.
- W2128889245 cites W2098958777 @default.
- W2128889245 cites W2099915247 @default.
- W2128889245 cites W2101165556 @default.
- W2128889245 cites W2110733154 @default.
- W2128889245 cites W2116540404 @default.
- W2128889245 cites W2116679574 @default.
- W2128889245 cites W2120283843 @default.
- W2128889245 cites W2125838338 @default.
- W2128889245 cites W2130479394 @default.
- W2128889245 cites W2141619954 @default.
- W2128889245 cites W2142038007 @default.
- W2128889245 cites W2142775654 @default.
- W2128889245 cites W2152239535 @default.
- W2128889245 cites W2158623906 @default.
- W2128889245 cites W2162432783 @default.
- W2128889245 cites W2165819499 @default.
- W2128889245 cites W2166187656 @default.
- W2128889245 cites W2166866346 @default.
- W2128889245 cites W2482531687 @default.
- W2128889245 cites W2962872234 @default.
- W2128889245 cites W2963679701 @default.
- W2128889245 cites W3104134717 @default.
- W2128889245 cites W3148186152 @default.
- W2128889245 cites W995630646 @default.
- W2128889245 cites W2603516344 @default.
- W2128889245 hasPublicationYear "2014" @default.
- W2128889245 type Work @default.
- W2128889245 sameAs 2128889245 @default.
- W2128889245 citedByCount "13" @default.
- W2128889245 countsByYear W21288892452015 @default.
- W2128889245 countsByYear W21288892452016 @default.
- W2128889245 countsByYear W21288892452017 @default.
- W2128889245 countsByYear W21288892452018 @default.
- W2128889245 countsByYear W21288892452020 @default.
- W2128889245 countsByYear W21288892452021 @default.
- W2128889245 crossrefType "journal-article" @default.
- W2128889245 hasAuthorship W2128889245A5060111294 @default.
- W2128889245 hasAuthorship W2128889245A5079016144 @default.
- W2128889245 hasConcept C105795698 @default.
- W2128889245 hasConcept C11413529 @default.
- W2128889245 hasConcept C119857082 @default.
- W2128889245 hasConcept C153180895 @default.
- W2128889245 hasConcept C154945302 @default.
- W2128889245 hasConcept C165464430 @default.
- W2128889245 hasConcept C185429906 @default.
- W2128889245 hasConcept C199360897 @default.
- W2128889245 hasConcept C23224414 @default.
- W2128889245 hasConcept C2776214188 @default.