Matches in SemOpenAlex for { <https://semopenalex.org/work/W2129092711> ?p ?o ?g. }
- W2129092711 endingPage "119" @default.
- W2129092711 startingPage "108" @default.
- W2129092711 abstract "The consistency of propensity score (PS) estimators relies on correct specification of the PS model. The PS is frequently estimated using main-effects logistic regression. However, the underlying model assumptions may not hold. Machine learning methods provide an alternative nonparametric approach to PS estimation. In this simulation study, we evaluated the benefit of using Super Learner (SL) for PS estimation. We created 1,000 simulated data sets (n = 500) under 4 different scenarios characterized by various degrees of deviance from the usual main-term logistic regression model for the true PS. We estimated the average treatment effect using PS matching and inverse probability of treatment weighting. The estimators' performance was evaluated in terms of PS prediction accuracy, covariate balance achieved, bias, standard error, coverage, and mean squared error. All methods exhibited adequate overall balancing properties, but in the case of model misspecification, SL performed better for highly unbalanced variables. The SL-based estimators were associated with the smallest bias in cases of severe model misspecification. Our results suggest that use of SL to estimate the PS can improve covariate balance and reduce bias in a meaningful manner in cases of serious model misspecification for treatment assignment." @default.
- W2129092711 created "2016-06-24" @default.
- W2129092711 creator A5032275725 @default.
- W2129092711 creator A5069384506 @default.
- W2129092711 creator A5088136001 @default.
- W2129092711 date "2014-12-16" @default.
- W2129092711 modified "2023-10-18" @default.
- W2129092711 title "Improving Propensity Score Estimators' Robustness to Model Misspecification Using Super Learner" @default.
- W2129092711 cites W1501511408 @default.
- W2129092711 cites W1967862917 @default.
- W2129092711 cites W1975994236 @default.
- W2129092711 cites W1985330842 @default.
- W2129092711 cites W1989158466 @default.
- W2129092711 cites W1999822211 @default.
- W2129092711 cites W2000991311 @default.
- W2129092711 cites W2002646960 @default.
- W2129092711 cites W2008557562 @default.
- W2129092711 cites W2018331991 @default.
- W2129092711 cites W2028040032 @default.
- W2129092711 cites W2032481853 @default.
- W2129092711 cites W2034309896 @default.
- W2129092711 cites W2035481234 @default.
- W2129092711 cites W2037135054 @default.
- W2129092711 cites W2051375321 @default.
- W2129092711 cites W2055296410 @default.
- W2129092711 cites W2056108924 @default.
- W2129092711 cites W2061691003 @default.
- W2129092711 cites W2073225472 @default.
- W2129092711 cites W2090978224 @default.
- W2129092711 cites W2091314883 @default.
- W2129092711 cites W2097360283 @default.
- W2129092711 cites W2100609031 @default.
- W2129092711 cites W2102201073 @default.
- W2129092711 cites W2103371988 @default.
- W2129092711 cites W2109373157 @default.
- W2129092711 cites W2110054348 @default.
- W2129092711 cites W2111727585 @default.
- W2129092711 cites W2121690051 @default.
- W2129092711 cites W2126049444 @default.
- W2129092711 cites W2135695572 @default.
- W2129092711 cites W2138153404 @default.
- W2129092711 cites W2148678270 @default.
- W2129092711 cites W2150291618 @default.
- W2129092711 cites W2155169076 @default.
- W2129092711 cites W2164498941 @default.
- W2129092711 cites W2166919242 @default.
- W2129092711 cites W2168458505 @default.
- W2129092711 cites W2168639902 @default.
- W2129092711 cites W2171443468 @default.
- W2129092711 cites W2911964244 @default.
- W2129092711 cites W3106333376 @default.
- W2129092711 cites W3122781290 @default.
- W2129092711 cites W3125357717 @default.
- W2129092711 cites W3125459412 @default.
- W2129092711 cites W4212883601 @default.
- W2129092711 cites W4233056867 @default.
- W2129092711 cites W4234921364 @default.
- W2129092711 cites W4239510810 @default.
- W2129092711 cites W4239728164 @default.
- W2129092711 doi "https://doi.org/10.1093/aje/kwu253" @default.
- W2129092711 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4351345" @default.
- W2129092711 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25515168" @default.
- W2129092711 hasPublicationYear "2014" @default.
- W2129092711 type Work @default.
- W2129092711 sameAs 2129092711 @default.
- W2129092711 citedByCount "123" @default.
- W2129092711 countsByYear W21290927112014 @default.
- W2129092711 countsByYear W21290927112015 @default.
- W2129092711 countsByYear W21290927112016 @default.
- W2129092711 countsByYear W21290927112017 @default.
- W2129092711 countsByYear W21290927112018 @default.
- W2129092711 countsByYear W21290927112019 @default.
- W2129092711 countsByYear W21290927112020 @default.
- W2129092711 countsByYear W21290927112021 @default.
- W2129092711 countsByYear W21290927112022 @default.
- W2129092711 countsByYear W21290927112023 @default.
- W2129092711 crossrefType "journal-article" @default.
- W2129092711 hasAuthorship W2129092711A5032275725 @default.
- W2129092711 hasAuthorship W2129092711A5069384506 @default.
- W2129092711 hasAuthorship W2129092711A5088136001 @default.
- W2129092711 hasBestOaLocation W21290927111 @default.
- W2129092711 hasConcept C102366305 @default.
- W2129092711 hasConcept C104317684 @default.
- W2129092711 hasConcept C105795698 @default.
- W2129092711 hasConcept C107673813 @default.
- W2129092711 hasConcept C117222624 @default.
- W2129092711 hasConcept C119043178 @default.
- W2129092711 hasConcept C126838900 @default.
- W2129092711 hasConcept C139945424 @default.
- W2129092711 hasConcept C149782125 @default.
- W2129092711 hasConcept C151956035 @default.
- W2129092711 hasConcept C17923572 @default.
- W2129092711 hasConcept C183115368 @default.
- W2129092711 hasConcept C185429906 @default.
- W2129092711 hasConcept C185592680 @default.
- W2129092711 hasConcept C2779915747 @default.
- W2129092711 hasConcept C33923547 @default.
- W2129092711 hasConcept C35981017 @default.