Matches in SemOpenAlex for { <https://semopenalex.org/work/W2129129718> ?p ?o ?g. }
- W2129129718 endingPage "189" @default.
- W2129129718 startingPage "154" @default.
- W2129129718 abstract "Thermodynamically consistent phase field theory for multivariant martensitic transformations, which includes large strains and interface stresses, is developed. Theory is formulated in a way that some geometrically nonlinear terms do not disappear in the geometrically linear limit, which in particular allowed us to introduce the expression for the interface stresses consistent with the sharp interface approach. Namely, for the propagating nonequilibrium interface, a structural part of the interface Cauchy stresses reduces to a biaxial tension with the magnitude equal to the temperature-dependent interface energy. Additional elastic and viscous contributions to the interface stresses do not require separate constitutive equations and are determined by solution of the coupled system of phase field and mechanics equations. Ginzburg–Landau equations are derived for the evolution of the order parameters and temperature evolution equation. Boundary conditions for the order parameters include variation of the surface energy during phase transformation. Because elastic energy is defined per unit volume of unloaded (intermediate) configuration, additional contributions to the Ginzburg–Landau equations and the expression for entropy appear, which are important even for small strains. A complete system of equations for fifth- and sixth-degree polynomials in terms of the order parameters is presented in the reference and actual configurations. An analytical solution for the propagating interface and critical martensitic nucleus which includes distribution of components of interface stresses has been found for the sixth-degree polynomial. This required resolving a fundamental problem in the interface and surface science: how to define the Gibbsian dividing surface, i.e., the sharp interface equivalent to the finite-width interface. An unexpected, simple solution was found utilizing the principle of static equivalence. In fact, even two equations for determination of the dividing surface follow from the equivalence of the resultant force and zero-moment condition. For the obtained analytical solution for the propagating interface, both conditions determine the same dividing surface, i.e., the theory is noncontradictory. A similar formalism can be developed for the phase field approach to diffusive phase transformations described by the Cahn–Hilliard equation, twinning, dislocations, fracture, and their interaction." @default.
- W2129129718 created "2016-06-24" @default.
- W2129129718 creator A5076056522 @default.
- W2129129718 date "2014-10-01" @default.
- W2129129718 modified "2023-10-17" @default.
- W2129129718 title "Phase field approach to martensitic phase transformations with large strains and interface stresses" @default.
- W2129129718 cites W1535107251 @default.
- W2129129718 cites W1562799287 @default.
- W2129129718 cites W1727314373 @default.
- W2129129718 cites W1964049540 @default.
- W2129129718 cites W1965406968 @default.
- W2129129718 cites W1970855946 @default.
- W2129129718 cites W1971424358 @default.
- W2129129718 cites W1972018713 @default.
- W2129129718 cites W1972757495 @default.
- W2129129718 cites W1973740937 @default.
- W2129129718 cites W1977988816 @default.
- W2129129718 cites W1978999286 @default.
- W2129129718 cites W1980822512 @default.
- W2129129718 cites W1981173278 @default.
- W2129129718 cites W1981412090 @default.
- W2129129718 cites W1981855325 @default.
- W2129129718 cites W1984367776 @default.
- W2129129718 cites W1987476787 @default.
- W2129129718 cites W1989133890 @default.
- W2129129718 cites W1990309373 @default.
- W2129129718 cites W1990839788 @default.
- W2129129718 cites W1991611150 @default.
- W2129129718 cites W1997334831 @default.
- W2129129718 cites W1997861483 @default.
- W2129129718 cites W1999663633 @default.
- W2129129718 cites W2001683460 @default.
- W2129129718 cites W2002734100 @default.
- W2129129718 cites W2003515989 @default.
- W2129129718 cites W2003919808 @default.
- W2129129718 cites W2004068671 @default.
- W2129129718 cites W2007876974 @default.
- W2129129718 cites W2009320010 @default.
- W2129129718 cites W2010459588 @default.
- W2129129718 cites W2011231487 @default.
- W2129129718 cites W2013886959 @default.
- W2129129718 cites W2014105144 @default.
- W2129129718 cites W2015935013 @default.
- W2129129718 cites W2022592030 @default.
- W2129129718 cites W2023087742 @default.
- W2129129718 cites W2024980620 @default.
- W2129129718 cites W2028995335 @default.
- W2129129718 cites W2029057978 @default.
- W2129129718 cites W2034335605 @default.
- W2129129718 cites W2034511590 @default.
- W2129129718 cites W2034768461 @default.
- W2129129718 cites W2038697943 @default.
- W2129129718 cites W2044686978 @default.
- W2129129718 cites W2045182135 @default.
- W2129129718 cites W2045825474 @default.
- W2129129718 cites W2046528357 @default.
- W2129129718 cites W2046577669 @default.
- W2129129718 cites W2047655771 @default.
- W2129129718 cites W2049061572 @default.
- W2129129718 cites W2049253172 @default.
- W2129129718 cites W2049554049 @default.
- W2129129718 cites W2050828221 @default.
- W2129129718 cites W2050856133 @default.
- W2129129718 cites W2055417103 @default.
- W2129129718 cites W2055868375 @default.
- W2129129718 cites W2059158987 @default.
- W2129129718 cites W2059911738 @default.
- W2129129718 cites W2060571659 @default.
- W2129129718 cites W2061291988 @default.
- W2129129718 cites W2062467832 @default.
- W2129129718 cites W2066336984 @default.
- W2129129718 cites W2067351698 @default.
- W2129129718 cites W2068217377 @default.
- W2129129718 cites W2069052595 @default.
- W2129129718 cites W2071827484 @default.
- W2129129718 cites W2072079384 @default.
- W2129129718 cites W2074819700 @default.
- W2129129718 cites W2077798659 @default.
- W2129129718 cites W2079396461 @default.
- W2129129718 cites W2079408229 @default.
- W2129129718 cites W2079603417 @default.
- W2129129718 cites W2080506523 @default.
- W2129129718 cites W2085580202 @default.
- W2129129718 cites W2089412319 @default.
- W2129129718 cites W2091458120 @default.
- W2129129718 cites W2094565236 @default.
- W2129129718 cites W2094810125 @default.
- W2129129718 cites W2095579479 @default.
- W2129129718 cites W2097973750 @default.
- W2129129718 cites W2102116506 @default.
- W2129129718 cites W2104903619 @default.
- W2129129718 cites W2107436920 @default.
- W2129129718 cites W2117334062 @default.
- W2129129718 cites W2119805660 @default.
- W2129129718 cites W2124818126 @default.
- W2129129718 cites W2137781338 @default.
- W2129129718 cites W2138777019 @default.
- W2129129718 cites W2150976150 @default.