Matches in SemOpenAlex for { <https://semopenalex.org/work/W2129145352> ?p ?o ?g. }
- W2129145352 endingPage "774" @default.
- W2129145352 startingPage "757" @default.
- W2129145352 abstract "Methane fluxes measured in a eutrophic peat meadow in The Netherlands dominated by vascular plants showed high spatial and temporal variability. To elucidate this variability as well as the underlying processes, various measurement techniques were used: soil gradients of methane concentrations, the chamber method, and the eddy covariance technique. Additionally, soil temperature at multiple depths, soil water level, root depth, carbon dioxide fluxes, incoming radiation, atmospheric pressure, wind speed, friction velocity latent, heat fluxes, and living biomass were monitored. A comparison of the measurement techniques showed that: (a) the soil gradient method and the chamber method showed comparable methane fluxes only at a site with low water table and shallow roots, while at other sites methane fluxes were underestimated with the soil gradient method by an order of magnitude; (b) a footprint analysis showed that the chamber method and eddy covariance showed similar methane fluxes for the different land elements (dry land, wet land, and ditches plus borders). However, when up-scaling the chamber measurements over time using a regression model based on soil temperature, methane emissions were overestimated by 37% compared to the eddy covariance data. The chamber method was the best technique to assess spatial variability, while eddy covariance was best for assessing temporal variability as well as up-scaling. The soil gradient method for methane fluxes should be used with great care, and probably generates reliable results only in areas with low water table and shallow roots. Both the chamber method and eddy covariance showed significant spatial variability, which was best explained by soil water level in combination with root depth patterns. Together, these variables probably determined the net methane production and the available mechanisms for methane transport to atmosphere. The methane fluxes showed strong temporal variability at different scales: diurnal cycles, significant day-to-day variability, and seasonal variations. Clear diurnal cycles of methane fluxes were observed synchronous to incoming radiation, latent heat and net ecosystem exchange, but not synchronous to temperature. This suggested that stomatal opening and/or pressurized convective throughflow were important mechanisms for gas transport through plants. The variability at the day-to-day scale was best explained by soil temperature below the water level combined with soil water level. Highest methane fluxes were observed during summer and lowest fluxes during autumn and winter. The vegetation density together with temperature and length of day-light probably determined this seasonality. Also, temporal variability varied spatially, probably due to the water table and root depth." @default.
- W2129145352 created "2016-06-24" @default.
- W2129145352 creator A5025983426 @default.
- W2129145352 creator A5054992934 @default.
- W2129145352 creator A5090050102 @default.
- W2129145352 date "2010-06-01" @default.
- W2129145352 modified "2023-10-16" @default.
- W2129145352 title "Multi-technique assessment of spatial and temporal variability of methane fluxes in a peat meadow" @default.
- W2129145352 cites W1271442091 @default.
- W2129145352 cites W1604999394 @default.
- W2129145352 cites W1611002054 @default.
- W2129145352 cites W1901913500 @default.
- W2129145352 cites W1969802695 @default.
- W2129145352 cites W1981377591 @default.
- W2129145352 cites W2002947253 @default.
- W2129145352 cites W2007474065 @default.
- W2129145352 cites W2008039223 @default.
- W2129145352 cites W2009923166 @default.
- W2129145352 cites W2014120569 @default.
- W2129145352 cites W2018505901 @default.
- W2129145352 cites W2024634120 @default.
- W2129145352 cites W2029745088 @default.
- W2129145352 cites W2031616620 @default.
- W2129145352 cites W2035619466 @default.
- W2129145352 cites W2038093716 @default.
- W2129145352 cites W2038344801 @default.
- W2129145352 cites W2038437381 @default.
- W2129145352 cites W2038704388 @default.
- W2129145352 cites W2042308565 @default.
- W2129145352 cites W2044864261 @default.
- W2129145352 cites W2047086889 @default.
- W2129145352 cites W2052231490 @default.
- W2129145352 cites W2052561772 @default.
- W2129145352 cites W2061576525 @default.
- W2129145352 cites W2063642813 @default.
- W2129145352 cites W2066628255 @default.
- W2129145352 cites W2069754937 @default.
- W2129145352 cites W2070202740 @default.
- W2129145352 cites W2071456926 @default.
- W2129145352 cites W2078680966 @default.
- W2129145352 cites W2082883060 @default.
- W2129145352 cites W2092999798 @default.
- W2129145352 cites W2099008009 @default.
- W2129145352 cites W2101731795 @default.
- W2129145352 cites W2101847691 @default.
- W2129145352 cites W2104872630 @default.
- W2129145352 cites W2114476899 @default.
- W2129145352 cites W2116306771 @default.
- W2129145352 cites W2117324426 @default.
- W2129145352 cites W2124437404 @default.
- W2129145352 cites W2126150423 @default.
- W2129145352 cites W2133191435 @default.
- W2129145352 cites W2134263410 @default.
- W2129145352 cites W2143550760 @default.
- W2129145352 cites W2145985521 @default.
- W2129145352 cites W2152043175 @default.
- W2129145352 cites W2154059502 @default.
- W2129145352 cites W2156748700 @default.
- W2129145352 cites W2159620484 @default.
- W2129145352 cites W2161971727 @default.
- W2129145352 cites W2166536235 @default.
- W2129145352 cites W2168255157 @default.
- W2129145352 cites W2168560754 @default.
- W2129145352 cites W2483729796 @default.
- W2129145352 cites W4237485677 @default.
- W2129145352 cites W4254512049 @default.
- W2129145352 cites W4256087633 @default.
- W2129145352 doi "https://doi.org/10.1016/j.agrformet.2009.06.017" @default.
- W2129145352 hasPublicationYear "2010" @default.
- W2129145352 type Work @default.
- W2129145352 sameAs 2129145352 @default.
- W2129145352 citedByCount "106" @default.
- W2129145352 countsByYear W21291453522012 @default.
- W2129145352 countsByYear W21291453522013 @default.
- W2129145352 countsByYear W21291453522014 @default.
- W2129145352 countsByYear W21291453522015 @default.
- W2129145352 countsByYear W21291453522016 @default.
- W2129145352 countsByYear W21291453522017 @default.
- W2129145352 countsByYear W21291453522018 @default.
- W2129145352 countsByYear W21291453522019 @default.
- W2129145352 countsByYear W21291453522020 @default.
- W2129145352 countsByYear W21291453522021 @default.
- W2129145352 countsByYear W21291453522022 @default.
- W2129145352 countsByYear W21291453522023 @default.
- W2129145352 crossrefType "journal-article" @default.
- W2129145352 hasAuthorship W2129145352A5025983426 @default.
- W2129145352 hasAuthorship W2129145352A5054992934 @default.
- W2129145352 hasAuthorship W2129145352A5090050102 @default.
- W2129145352 hasConcept C105795698 @default.
- W2129145352 hasConcept C110872660 @default.
- W2129145352 hasConcept C127313418 @default.
- W2129145352 hasConcept C159390177 @default.
- W2129145352 hasConcept C178790620 @default.
- W2129145352 hasConcept C185592680 @default.
- W2129145352 hasConcept C187320778 @default.
- W2129145352 hasConcept C18903297 @default.
- W2129145352 hasConcept C33923547 @default.
- W2129145352 hasConcept C35187779 @default.