Matches in SemOpenAlex for { <https://semopenalex.org/work/W2129203475> ?p ?o ?g. }
- W2129203475 endingPage "25" @default.
- W2129203475 startingPage "14" @default.
- W2129203475 abstract "The available ecological and palaeoecological information for two sea ice-related marine diatoms (Bacillariophyceae), Thalassiosira antarctica Comber and Porosira glacialis (Grunow) Jørgensen, suggests that these two species have similar sea surface temperature (SST), sea surface salinity (SSS) and sea ice proximity preferences. From phytoplankton observations, both are described as summer or autumn bloom species, commonly found in low SST waters associated with sea ice, although rarely within the ice. Both species form resting spores (RS) as irradiance decreases, SST falls and SSS increases in response to freezing ice in autumn. Recent work analysing late Quaternary seasonally laminated diatom ooze from coastal Antarctic sites has revealed that sub-laminae dominated either by T. antarctica RS, or by P. glacialis RS, are nearly always deposited as the last sediment increment of the year, interpreted as representing autumn flux. In this study, we focus on sites from the East Antarctic margin and show that there is a spatial and temporal separation in whether T. antarctica RS or P. glacialis RS form the autumnal sub-laminae. For instance, in deglacial sediments from the Mertz Ninnis Trough (George V Coast) P. glacialis RS form the sub-laminae whereas in similar age sediments from Iceberg Alley (Mac.Robertson Shelf) T. antarctica RS dominate the autumn sub-lamina. In the Dumont d'Urville Trough (Adélie Land), mid-Holocene (Hypsithermal warm period) autumnal sub-laminae are dominated by T. antarctica RS whereas late Holocene (Neoglacial cool period) sub-laminae are dominated by P. glacialis RS. These observations from late Quaternary seasonally laminated sediments would appear to indicate that P. glacialis prefers slightly cooler ocean–climate conditions than T. antarctica. We test this relationship against two down-core Holocene quantitative diatom abundance records from Dumont d'Urville Trough and Svenner Channel (Princess Elizabeth Land) and compare the results with SST and sea ice concentration results of an Antarctic and Southern Ocean Holocene climate simulation that used a coupled atmosphere–sea ice–vegation model forced with orbital parameters and greenhouse gas concentrations. We find that abundance of P. glacialis RS is favoured by higher winter and spring sea ice concentrations and that a climatically-sensitive threshold exists between the abundance of P. glacialis RS and T. antarctica RS in the sediments. An increase to > 0.1 for the ratio of P. glacialis RS:T. antarctica RS indicates a change to increased winter sea ice concentration (to >80% concentration), cooler spring seasons with increased sea ice, slightly warmer autumn seasons with less sea ice and a change from ~ 7.5 months annual sea ice cover at a site to much greater than 7.5 months. In the East Antarctic sediment record, an increase in the ratio from <0.1 to above 0.1 occurs at the transition from the warmer Hypsithermal climate into the cooler Neoglacial climate (~ 4 cal kyr) indicating that the ratio between these two diatoms has the potential to be used as a semi-quantitative climate proxy." @default.
- W2129203475 created "2016-06-24" @default.
- W2129203475 creator A5019278530 @default.
- W2129203475 creator A5022501227 @default.
- W2129203475 creator A5028608179 @default.
- W2129203475 creator A5035256951 @default.
- W2129203475 creator A5038262166 @default.
- W2129203475 creator A5050443224 @default.
- W2129203475 creator A5080678027 @default.
- W2129203475 date "2009-10-01" @default.
- W2129203475 modified "2023-10-11" @default.
- W2129203475 title "Observations on the relationship between the Antarctic coastal diatoms Thalassiosira antarctica Comber and Porosira glacialis (Grunow) Jørgensen and sea ice concentrations during the late Quaternary" @default.
- W2129203475 cites W1610389166 @default.
- W2129203475 cites W1617396509 @default.
- W2129203475 cites W1656675664 @default.
- W2129203475 cites W1729960489 @default.
- W2129203475 cites W1968770010 @default.
- W2129203475 cites W1977459095 @default.
- W2129203475 cites W1978246342 @default.
- W2129203475 cites W1992849651 @default.
- W2129203475 cites W1993128936 @default.
- W2129203475 cites W1998770546 @default.
- W2129203475 cites W2000466078 @default.
- W2129203475 cites W2001166778 @default.
- W2129203475 cites W2005032283 @default.
- W2129203475 cites W2005901928 @default.
- W2129203475 cites W2006982360 @default.
- W2129203475 cites W2013291175 @default.
- W2129203475 cites W2014484731 @default.
- W2129203475 cites W2015400099 @default.
- W2129203475 cites W2018595804 @default.
- W2129203475 cites W2020841395 @default.
- W2129203475 cites W2025199459 @default.
- W2129203475 cites W2025556166 @default.
- W2129203475 cites W2042893503 @default.
- W2129203475 cites W2054158981 @default.
- W2129203475 cites W2070707145 @default.
- W2129203475 cites W2073793295 @default.
- W2129203475 cites W2077115990 @default.
- W2129203475 cites W2077728026 @default.
- W2129203475 cites W2078531449 @default.
- W2129203475 cites W2081553487 @default.
- W2129203475 cites W2082051726 @default.
- W2129203475 cites W2087124197 @default.
- W2129203475 cites W2087294590 @default.
- W2129203475 cites W2088922281 @default.
- W2129203475 cites W2089666886 @default.
- W2129203475 cites W2106235077 @default.
- W2129203475 cites W2107701009 @default.
- W2129203475 cites W2110086774 @default.
- W2129203475 cites W2114787296 @default.
- W2129203475 cites W2123379850 @default.
- W2129203475 cites W2126773212 @default.
- W2129203475 cites W2134011080 @default.
- W2129203475 cites W2157256229 @default.
- W2129203475 cites W2160323468 @default.
- W2129203475 cites W2167926476 @default.
- W2129203475 cites W2171868354 @default.
- W2129203475 cites W3190495186 @default.
- W2129203475 cites W4246159656 @default.
- W2129203475 doi "https://doi.org/10.1016/j.marmicro.2009.06.005" @default.
- W2129203475 hasPublicationYear "2009" @default.
- W2129203475 type Work @default.
- W2129203475 sameAs 2129203475 @default.
- W2129203475 citedByCount "57" @default.
- W2129203475 countsByYear W21292034752012 @default.
- W2129203475 countsByYear W21292034752013 @default.
- W2129203475 countsByYear W21292034752014 @default.
- W2129203475 countsByYear W21292034752015 @default.
- W2129203475 countsByYear W21292034752016 @default.
- W2129203475 countsByYear W21292034752017 @default.
- W2129203475 countsByYear W21292034752018 @default.
- W2129203475 countsByYear W21292034752019 @default.
- W2129203475 countsByYear W21292034752020 @default.
- W2129203475 countsByYear W21292034752021 @default.
- W2129203475 countsByYear W21292034752022 @default.
- W2129203475 crossrefType "journal-article" @default.
- W2129203475 hasAuthorship W2129203475A5019278530 @default.
- W2129203475 hasAuthorship W2129203475A5022501227 @default.
- W2129203475 hasAuthorship W2129203475A5028608179 @default.
- W2129203475 hasAuthorship W2129203475A5035256951 @default.
- W2129203475 hasAuthorship W2129203475A5038262166 @default.
- W2129203475 hasAuthorship W2129203475A5050443224 @default.
- W2129203475 hasAuthorship W2129203475A5080678027 @default.
- W2129203475 hasBestOaLocation W21292034754 @default.
- W2129203475 hasConcept C111368507 @default.
- W2129203475 hasConcept C127313418 @default.
- W2129203475 hasConcept C136894858 @default.
- W2129203475 hasConcept C140345934 @default.
- W2129203475 hasConcept C151730666 @default.
- W2129203475 hasConcept C160464908 @default.
- W2129203475 hasConcept C197435368 @default.
- W2129203475 hasConcept C2778902744 @default.
- W2129203475 hasConcept C87547467 @default.
- W2129203475 hasConceptScore W2129203475C111368507 @default.
- W2129203475 hasConceptScore W2129203475C127313418 @default.
- W2129203475 hasConceptScore W2129203475C136894858 @default.
- W2129203475 hasConceptScore W2129203475C140345934 @default.