Matches in SemOpenAlex for { <https://semopenalex.org/work/W2129248052> ?p ?o ?g. }
- W2129248052 endingPage "2838" @default.
- W2129248052 startingPage "2795" @default.
- W2129248052 abstract "1.1 Photodynamic Therapy and ImagingThe purpose of this review is to present the current state of the role of imaging in photodynamic therapy (PDT). In order for the reader to fully appreciate the context of the discussions embodied in this article we begin with an overview of the PDT process, starting with a brief historical perspective followed by detailed discussions of specific applications of imaging in PDT. Each section starts with an overview of the specific topic and, where appropriate, ends with summary and future directions. The review closes with the authors’ perspective of the areas of future emphasis and promise. The basic premise of this review is that a combination of imaging and PDT will provide improved research and therapeutic strategies.PDT is a photochemistry-based approach that uses a light-activatable chemical, termed a photosensitizer (PS), and light of an appropriate wavelength, to impart cytotoxicity via the generation of reactive molecular species (Figure 1a). In clinical settings, the PS is typically administered intravenously or topically, followed by illumination using a light delivery system suitable for the anatomical site being treated (Figure 1b). The time delay, often referred to as drug-light interval, between PS administration and the start of illumination with currently used PSs varies from 5 minutes to 24 hours or more depending on the specific PS and the target disease. Strictly speaking, this should be referred to as the PS-light interval, as at the concentrations typically used the PS is not a drug, but the drug-light interval terminology seems to be used fairly frequently. Typically, the useful range of wavelengths for therapeutic activation of the PS is 600 to 800 nm, to avoid interference by endogenous chromophores within the body, and yet maintain the energetics necessary for the generation of cytotoxic species (as discussed below) such as singlet oxygen (1O2). However, it is important to note that photosensitizers can also serve as fluorescence imaging agents for which activation with light in the 400nm range is often used and has been extremely useful in diagnostic imaging applications as described extensively in Section 2 of this review. The obvious limitation of short wavelength excitation is the lack of tissue penetration so that the volumes that are probed under these conditions are relatively shallow.Open in a separate windowFigure 1(A) A schematic representation of PDT where PS is a photoactivatable multifunctional agent, which, upon light activation can serve as both an imaging agent and a therapeutic agent. (B) A schematic representation of the sequence of administration, localization and light activation of the PS for PDT or fluorescence imaging. Typically the PS is delivered systemically and allowed to circulate for an appropriate time interval (the “drug-light interval”), during which the PS accumulates preferentially in the target lesion(s) prior to light activation. In the idealized depiction here the PS is accumulation is shown to be entirely in the target tissue, however, even if this is not the case, light delivery confers a second layer of selectivity so that the cytotoxic effect will be generated only in regions where both drug and light are present. Upon localization of the PS, light activation will result in fluorescence emission which can be implemented for imaging applications, as well as generation cytotoxic species for therapy. In the former case light activation is achieved with a low fluence rate to generate fluorescence emission with little or no cytotoxic effect, while in the latter case a high fluence rate is used to generate a sufficient concentration of cytotoxic species to achieve biological effects." @default.
- W2129248052 created "2016-06-24" @default.
- W2129248052 creator A5004594328 @default.
- W2129248052 creator A5007170985 @default.
- W2129248052 creator A5058184923 @default.
- W2129248052 creator A5064683888 @default.
- W2129248052 creator A5072854288 @default.
- W2129248052 creator A5073936872 @default.
- W2129248052 creator A5075937385 @default.
- W2129248052 creator A5086231443 @default.
- W2129248052 date "2010-03-30" @default.
- W2129248052 modified "2023-10-16" @default.
- W2129248052 title "Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization" @default.
- W2129248052 cites W101316190 @default.
- W2129248052 cites W119579464 @default.
- W2129248052 cites W1491596018 @default.
- W2129248052 cites W1506108633 @default.
- W2129248052 cites W1513986580 @default.
- W2129248052 cites W1522763255 @default.
- W2129248052 cites W1527974584 @default.
- W2129248052 cites W1565717382 @default.
- W2129248052 cites W1572736799 @default.
- W2129248052 cites W1591618263 @default.
- W2129248052 cites W1594222220 @default.
- W2129248052 cites W1601975653 @default.
- W2129248052 cites W1607777232 @default.
- W2129248052 cites W172279490 @default.
- W2129248052 cites W17375601 @default.
- W2129248052 cites W1740529587 @default.
- W2129248052 cites W1745634660 @default.
- W2129248052 cites W1776606164 @default.
- W2129248052 cites W1833895897 @default.
- W2129248052 cites W1836342344 @default.
- W2129248052 cites W1897342331 @default.
- W2129248052 cites W1897366877 @default.
- W2129248052 cites W1908801241 @default.
- W2129248052 cites W1910991734 @default.
- W2129248052 cites W1916661321 @default.
- W2129248052 cites W1958679672 @default.
- W2129248052 cites W1963592892 @default.
- W2129248052 cites W1964947406 @default.
- W2129248052 cites W1965708317 @default.
- W2129248052 cites W1966029466 @default.
- W2129248052 cites W1966499603 @default.
- W2129248052 cites W1968443666 @default.
- W2129248052 cites W1968474044 @default.
- W2129248052 cites W1968683908 @default.
- W2129248052 cites W1969071734 @default.
- W2129248052 cites W1969729626 @default.
- W2129248052 cites W1969820931 @default.
- W2129248052 cites W1970697382 @default.
- W2129248052 cites W1971309058 @default.
- W2129248052 cites W1971647599 @default.
- W2129248052 cites W1974463681 @default.
- W2129248052 cites W1974544090 @default.
- W2129248052 cites W1974642741 @default.
- W2129248052 cites W1976476671 @default.
- W2129248052 cites W1976960773 @default.
- W2129248052 cites W1978400993 @default.
- W2129248052 cites W1978993323 @default.
- W2129248052 cites W1979586502 @default.
- W2129248052 cites W1979887297 @default.
- W2129248052 cites W1980461306 @default.
- W2129248052 cites W1982432441 @default.
- W2129248052 cites W1982898179 @default.
- W2129248052 cites W1984010775 @default.
- W2129248052 cites W1984122808 @default.
- W2129248052 cites W1986673804 @default.
- W2129248052 cites W1987081782 @default.
- W2129248052 cites W1988987966 @default.
- W2129248052 cites W1989009891 @default.
- W2129248052 cites W1990051179 @default.
- W2129248052 cites W1990651316 @default.
- W2129248052 cites W1992960527 @default.
- W2129248052 cites W1993012506 @default.
- W2129248052 cites W1993286866 @default.
- W2129248052 cites W1994818048 @default.
- W2129248052 cites W1995630734 @default.
- W2129248052 cites W1997801494 @default.
- W2129248052 cites W1998548419 @default.
- W2129248052 cites W1999364789 @default.
- W2129248052 cites W1999536353 @default.
- W2129248052 cites W2000672688 @default.
- W2129248052 cites W2002045993 @default.
- W2129248052 cites W2002390318 @default.
- W2129248052 cites W2003627892 @default.
- W2129248052 cites W2004951826 @default.
- W2129248052 cites W2004956687 @default.
- W2129248052 cites W2007299129 @default.
- W2129248052 cites W2009427112 @default.
- W2129248052 cites W2011177091 @default.
- W2129248052 cites W2011550114 @default.
- W2129248052 cites W2012027359 @default.
- W2129248052 cites W2012359111 @default.
- W2129248052 cites W2012407707 @default.
- W2129248052 cites W2012620375 @default.
- W2129248052 cites W2013474093 @default.
- W2129248052 cites W2013917333 @default.