Matches in SemOpenAlex for { <https://semopenalex.org/work/W2129578857> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2129578857 endingPage "160" @default.
- W2129578857 startingPage "131" @default.
- W2129578857 abstract "Causal relations are present in many application domains. Causal Probabilistic Logic (CP-logic) is a probabilistic modeling language that is especially designed to express such relations. This paper investigates the learning of CP-logic theories (CP-theories) from training data. Its first contribution is SEM-CP-logic, an algorithm that learns CP-theories by leveraging Bayesian network (BN) learning techniques. SEM-CP-logic is based on a transformation between CP-theories and BNs. That is, the method applies BN learning techniques to learn a CP-theory in the form of an equivalent BN. To this end, certain modifications are required to the BN parameter learning and structure search, the most important one being that the refinement operator used by the search must guarantee that the constructed BNs represent valid CP-theories. The paper's second contribution is a theoretical and experimental comparison between CP-theory and BN learning. We show that the most simple CP-theories can be represented with BNs consisting of noisy-OR nodes, while more complex theories require close to fully connected networks (unless additional unobserved nodes are introduced in the network). Experiments in a controlled artificial domain show that in the latter cases CP-theory learning with SEM-CP-logic requires fewer training data than BN learning. We also apply SEM-CP-logic in a medical application in the context of HIV research, and show that it can compete with state-of-the-art methods in this domain." @default.
- W2129578857 created "2016-06-24" @default.
- W2129578857 creator A5068600618 @default.
- W2129578857 creator A5074451226 @default.
- W2129578857 creator A5086906175 @default.
- W2129578857 date "2008-01-01" @default.
- W2129578857 modified "2023-09-23" @default.
- W2129578857 title "Learning Ground CP-Logic Theories by Leveraging Bayesian Network Learning Techniques" @default.
- W2129578857 cites W1496268409 @default.
- W2129578857 cites W1508922218 @default.
- W2129578857 cites W1512797207 @default.
- W2129578857 cites W1514973146 @default.
- W2129578857 cites W1519609121 @default.
- W2129578857 cites W1523680690 @default.
- W2129578857 cites W1523817461 @default.
- W2129578857 cites W1562506262 @default.
- W2129578857 cites W1585529040 @default.
- W2129578857 cites W1824971879 @default.
- W2129578857 cites W1977970897 @default.
- W2129578857 cites W2049633694 @default.
- W2129578857 cites W2065606385 @default.
- W2129578857 cites W2080828514 @default.
- W2129578857 cites W2084943080 @default.
- W2129578857 cites W2088853743 @default.
- W2129578857 cites W2100145144 @default.
- W2129578857 cites W2101736851 @default.
- W2129578857 cites W2126185296 @default.
- W2129578857 cites W2142103257 @default.
- W2129578857 cites W2151286458 @default.
- W2129578857 cites W2159080219 @default.
- W2129578857 cites W2170112109 @default.
- W2129578857 cites W2283194053 @default.
- W2129578857 cites W2484153108 @default.
- W2129578857 cites W2523260301 @default.
- W2129578857 cites W2610167300 @default.
- W2129578857 cites W3133236490 @default.
- W2129578857 cites W3150399627 @default.
- W2129578857 cites W1492455856 @default.
- W2129578857 hasPublicationYear "2008" @default.
- W2129578857 type Work @default.
- W2129578857 sameAs 2129578857 @default.
- W2129578857 citedByCount "14" @default.
- W2129578857 countsByYear W21295788572012 @default.
- W2129578857 countsByYear W21295788572013 @default.
- W2129578857 countsByYear W21295788572014 @default.
- W2129578857 countsByYear W21295788572015 @default.
- W2129578857 countsByYear W21295788572021 @default.
- W2129578857 crossrefType "journal-article" @default.
- W2129578857 hasAuthorship W2129578857A5068600618 @default.
- W2129578857 hasAuthorship W2129578857A5074451226 @default.
- W2129578857 hasAuthorship W2129578857A5086906175 @default.
- W2129578857 hasConcept C119857082 @default.
- W2129578857 hasConcept C134306372 @default.
- W2129578857 hasConcept C154945302 @default.
- W2129578857 hasConcept C33724603 @default.
- W2129578857 hasConcept C33923547 @default.
- W2129578857 hasConcept C36503486 @default.
- W2129578857 hasConcept C41008148 @default.
- W2129578857 hasConcept C49937458 @default.
- W2129578857 hasConcept C80444323 @default.
- W2129578857 hasConceptScore W2129578857C119857082 @default.
- W2129578857 hasConceptScore W2129578857C134306372 @default.
- W2129578857 hasConceptScore W2129578857C154945302 @default.
- W2129578857 hasConceptScore W2129578857C33724603 @default.
- W2129578857 hasConceptScore W2129578857C33923547 @default.
- W2129578857 hasConceptScore W2129578857C36503486 @default.
- W2129578857 hasConceptScore W2129578857C41008148 @default.
- W2129578857 hasConceptScore W2129578857C49937458 @default.
- W2129578857 hasConceptScore W2129578857C80444323 @default.
- W2129578857 hasIssue "1" @default.
- W2129578857 hasLocation W21295788571 @default.
- W2129578857 hasOpenAccess W2129578857 @default.
- W2129578857 hasPrimaryLocation W21295788571 @default.
- W2129578857 hasRelatedWork W1215345351 @default.
- W2129578857 hasRelatedWork W1508922218 @default.
- W2129578857 hasRelatedWork W1514973146 @default.
- W2129578857 hasRelatedWork W1518043585 @default.
- W2129578857 hasRelatedWork W1585529040 @default.
- W2129578857 hasRelatedWork W1601957265 @default.
- W2129578857 hasRelatedWork W1824971879 @default.
- W2129578857 hasRelatedWork W1968513265 @default.
- W2129578857 hasRelatedWork W1976526581 @default.
- W2129578857 hasRelatedWork W1977970897 @default.
- W2129578857 hasRelatedWork W1983128223 @default.
- W2129578857 hasRelatedWork W2052451171 @default.
- W2129578857 hasRelatedWork W2078833277 @default.
- W2129578857 hasRelatedWork W2084943080 @default.
- W2129578857 hasRelatedWork W2101335378 @default.
- W2129578857 hasRelatedWork W2137126099 @default.
- W2129578857 hasRelatedWork W2144429462 @default.
- W2129578857 hasRelatedWork W2283350629 @default.
- W2129578857 hasRelatedWork W2525903901 @default.
- W2129578857 hasRelatedWork W73939759 @default.
- W2129578857 hasVolume "89" @default.
- W2129578857 isParatext "false" @default.
- W2129578857 isRetracted "false" @default.
- W2129578857 magId "2129578857" @default.
- W2129578857 workType "article" @default.