Matches in SemOpenAlex for { <https://semopenalex.org/work/W2129586496> ?p ?o ?g. }
- W2129586496 endingPage "131" @default.
- W2129586496 startingPage "109" @default.
- W2129586496 abstract "Locally-weighted regression is a computationally-efficient technique for non-linear regression. However, for high-dimensional data, this technique becomes numerically brittle and computationally too expensive if many local models need to be maintained simultaneously. Thus, local linear dimensionality reduction combined with locally-weighted regression seems to be a promising solution. In this context, we review linear dimensionality-reduction methods, compare their performance on non-parametric locally-linear regression, and discuss their ability to extend to incremental learning. The considered methods belong to the following three groups: (1) reducing dimensionality only on the input data, (2) modeling the joint input-output data distribution, and (3) optimizing the correlation between projection directions and output data. Group 1 contains principal component regression (PCR); group 2 contains principal component analysis (PCA) in joint input and output space, factor analysis, and probabilistic PCA; and group 3 contains reduced rank regression (RRR) and partial least squares (PLS) regression. Among the tested methods, only group 3 managed to achieve robust performance even for a non-optimal number of components (factors or projection directions). In contrast, group 1 and 2 failed for fewer components since these methods rely on the correct estimate of the true intrinsic dimensionality. In group 3, PLS is the only method for which a computationally-efficient incremental implementation exists. Thus, PLS appears to be ideally suited as a building block for a locally-weighted regressor in which projection directions are incrementally added on the fly." @default.
- W2129586496 created "2016-06-24" @default.
- W2129586496 creator A5029642293 @default.
- W2129586496 creator A5069715982 @default.
- W2129586496 creator A5090905813 @default.
- W2129586496 date "2009-02-13" @default.
- W2129586496 modified "2023-09-23" @default.
- W2129586496 title "Local Dimensionality Reduction for Non-Parametric Regression" @default.
- W2129586496 cites W1597173708 @default.
- W2129586496 cites W1672197616 @default.
- W2129586496 cites W1689445748 @default.
- W2129586496 cites W1765423415 @default.
- W2129586496 cites W1964926995 @default.
- W2129586496 cites W1976251851 @default.
- W2129586496 cites W1976606095 @default.
- W2129586496 cites W2001141328 @default.
- W2129586496 cites W2006260003 @default.
- W2129586496 cites W2011006932 @default.
- W2129586496 cites W2017588182 @default.
- W2129586496 cites W2023447826 @default.
- W2129586496 cites W2023963201 @default.
- W2129586496 cites W2024697317 @default.
- W2129586496 cites W2028306844 @default.
- W2129586496 cites W2043968544 @default.
- W2129586496 cites W2053186076 @default.
- W2129586496 cites W2054121219 @default.
- W2129586496 cites W2079775628 @default.
- W2129586496 cites W2091617878 @default.
- W2129586496 cites W2097308346 @default.
- W2129586496 cites W2114414717 @default.
- W2129586496 cites W2114645401 @default.
- W2129586496 cites W2117499506 @default.
- W2129586496 cites W2122457664 @default.
- W2129586496 cites W2124634097 @default.
- W2129586496 cites W2125027820 @default.
- W2129586496 cites W2129497992 @default.
- W2129586496 cites W2131329059 @default.
- W2129586496 cites W2137234026 @default.
- W2129586496 cites W2145889472 @default.
- W2129586496 cites W2153756422 @default.
- W2129586496 cites W2156452366 @default.
- W2129586496 cites W2156909104 @default.
- W2129586496 cites W2166446427 @default.
- W2129586496 cites W2432567885 @default.
- W2129586496 cites W2496675188 @default.
- W2129586496 cites W4234698323 @default.
- W2129586496 cites W4237171445 @default.
- W2129586496 doi "https://doi.org/10.1007/s11063-009-9098-0" @default.
- W2129586496 hasPublicationYear "2009" @default.
- W2129586496 type Work @default.
- W2129586496 sameAs 2129586496 @default.
- W2129586496 citedByCount "28" @default.
- W2129586496 countsByYear W21295864962012 @default.
- W2129586496 countsByYear W21295864962013 @default.
- W2129586496 countsByYear W21295864962014 @default.
- W2129586496 countsByYear W21295864962015 @default.
- W2129586496 countsByYear W21295864962016 @default.
- W2129586496 countsByYear W21295864962017 @default.
- W2129586496 countsByYear W21295864962018 @default.
- W2129586496 countsByYear W21295864962019 @default.
- W2129586496 countsByYear W21295864962020 @default.
- W2129586496 countsByYear W21295864962021 @default.
- W2129586496 countsByYear W21295864962022 @default.
- W2129586496 countsByYear W21295864962023 @default.
- W2129586496 crossrefType "journal-article" @default.
- W2129586496 hasAuthorship W2129586496A5029642293 @default.
- W2129586496 hasAuthorship W2129586496A5069715982 @default.
- W2129586496 hasAuthorship W2129586496A5090905813 @default.
- W2129586496 hasBestOaLocation W21295864962 @default.
- W2129586496 hasConcept C105795698 @default.
- W2129586496 hasConcept C111030470 @default.
- W2129586496 hasConcept C11413529 @default.
- W2129586496 hasConcept C117251300 @default.
- W2129586496 hasConcept C151730666 @default.
- W2129586496 hasConcept C152877465 @default.
- W2129586496 hasConcept C153180895 @default.
- W2129586496 hasConcept C154945302 @default.
- W2129586496 hasConcept C27438332 @default.
- W2129586496 hasConcept C2779343474 @default.
- W2129586496 hasConcept C33923547 @default.
- W2129586496 hasConcept C41008148 @default.
- W2129586496 hasConcept C48921125 @default.
- W2129586496 hasConcept C49937458 @default.
- W2129586496 hasConcept C57493831 @default.
- W2129586496 hasConcept C70518039 @default.
- W2129586496 hasConcept C74887250 @default.
- W2129586496 hasConcept C83546350 @default.
- W2129586496 hasConcept C86803240 @default.
- W2129586496 hasConceptScore W2129586496C105795698 @default.
- W2129586496 hasConceptScore W2129586496C111030470 @default.
- W2129586496 hasConceptScore W2129586496C11413529 @default.
- W2129586496 hasConceptScore W2129586496C117251300 @default.
- W2129586496 hasConceptScore W2129586496C151730666 @default.
- W2129586496 hasConceptScore W2129586496C152877465 @default.
- W2129586496 hasConceptScore W2129586496C153180895 @default.
- W2129586496 hasConceptScore W2129586496C154945302 @default.
- W2129586496 hasConceptScore W2129586496C27438332 @default.
- W2129586496 hasConceptScore W2129586496C2779343474 @default.