Matches in SemOpenAlex for { <https://semopenalex.org/work/W2129718823> ?p ?o ?g. }
- W2129718823 endingPage "957" @default.
- W2129718823 startingPage "943" @default.
- W2129718823 abstract "Abstract Aim Although sharing many similarities in their vegetation types, South America and Africa harbour very dissimilar recent mammal faunas, not only taxonomically but also in terms of several faunistic patterns. However late Pleistocene and mid‐Holocene faunas, albeit taxonomically distinct, presented many convergent attributes. Here we propose that the effects of the Holocene climatic change on vegetation physiognomy has played a crucial role in shaping the extant mammalian faunistic patterns. Location South America and Africa from the late Pleistocene to the present. Methods Data presented here have been compiled from many distinct sources, including palaeontological and neontological mammalian studies, palaeoclimatology, palynology, and publications on vegetation ecology. Data on Pleistocene, Holocene and extant mammal faunas of South America and Africa allowed us to establish a number of similar and dissimilar faunistic patterns between the two continents across time. We then considered what changes in vegetation physiognomy would have occurred under the late Pleistocene last glacial maximum (LGM) and the Holocene climatic optimum (HCO) climatic regimes. We have ordained these proposed vegetation changes along rough physiognomic seral stages according to assumptions based on current botanical research. Finally, we have associated our hypothesized vegetation changes in South America and Africa with mammalian faunistic patterns, establishing a putative causal relationship between them. Results The extant mammal faunas of South America and Africa differ widely in taxonomical composition; the number of medium and large species they possess; behavioural and ecological characteristics related to herbivore herding, migration and predation; and biogeographical patterns. All such distinctions are mostly related to the open formation faunas, and have been completely established around the mid‐Holocene. Considering that the mid‐Holocene was a time of greater humidity than the late Pleistocene, vegetation cover in South America and Africa would have been dominated by forest or closed vegetation landscapes, at least for most of their lower altitude tropical regions. We attribute the loss of larger‐sized mammal lineages in South America to the decrease of open vegetation area, and their survival in Africa to the existence of vast savannas in formerly steppic or desertic areas in subtropical Africa, north and south of the equator. Alternative explanations, mostly dealing with the disappearance of South American megamammals, are then reviewed and criticized. Main conclusions The reduction of open formation areas during the HCO in South America and Africa explains most of the present distinct faunistic patterns between the two continents. While South America would have lost most of its open formations within the 30° latitudinal belt, Africa would have kept large areas suitable to the open formation mammalian fauna in areas presently occupied by desert and semi‐arid vegetation. Thus, the same general climatic events that affected South America in the late Pleistocene and Holocene also affected Africa, leading to our present day faunistic dissimilarities by maintaining the African mammalian communities almost unchanged while dramatically altering those of South America." @default.
- W2129718823 created "2016-06-24" @default.
- W2129718823 creator A5022309284 @default.
- W2129718823 creator A5050869955 @default.
- W2129718823 date "2004-05-07" @default.
- W2129718823 modified "2023-10-13" @default.
- W2129718823 title "Holocene vegetation change and the mammal faunas of South America and Africa" @default.
- W2129718823 cites W117394798 @default.
- W2129718823 cites W157868642 @default.
- W2129718823 cites W187681304 @default.
- W2129718823 cites W1890073974 @default.
- W2129718823 cites W1968967533 @default.
- W2129718823 cites W1973338979 @default.
- W2129718823 cites W1982893769 @default.
- W2129718823 cites W1984517089 @default.
- W2129718823 cites W1985501271 @default.
- W2129718823 cites W1987293320 @default.
- W2129718823 cites W1989311423 @default.
- W2129718823 cites W1997618248 @default.
- W2129718823 cites W2007463467 @default.
- W2129718823 cites W2015823673 @default.
- W2129718823 cites W2025088461 @default.
- W2129718823 cites W2029239330 @default.
- W2129718823 cites W2030885392 @default.
- W2129718823 cites W2049741317 @default.
- W2129718823 cites W2053736750 @default.
- W2129718823 cites W2054727188 @default.
- W2129718823 cites W2054832056 @default.
- W2129718823 cites W2055752934 @default.
- W2129718823 cites W2065842357 @default.
- W2129718823 cites W2066790760 @default.
- W2129718823 cites W2070619853 @default.
- W2129718823 cites W2075428134 @default.
- W2129718823 cites W2078458509 @default.
- W2129718823 cites W2081815766 @default.
- W2129718823 cites W2083276125 @default.
- W2129718823 cites W2083878410 @default.
- W2129718823 cites W2091031178 @default.
- W2129718823 cites W2091719554 @default.
- W2129718823 cites W2098898222 @default.
- W2129718823 cites W2099315961 @default.
- W2129718823 cites W2102586924 @default.
- W2129718823 cites W2131091648 @default.
- W2129718823 cites W2152828911 @default.
- W2129718823 cites W2172921917 @default.
- W2129718823 cites W2178293737 @default.
- W2129718823 cites W2313857828 @default.
- W2129718823 cites W2317055971 @default.
- W2129718823 cites W2489840209 @default.
- W2129718823 cites W2521336250 @default.
- W2129718823 cites W402973100 @default.
- W2129718823 cites W40583650 @default.
- W2129718823 cites W4229515527 @default.
- W2129718823 cites W4238683246 @default.
- W2129718823 cites W4319587940 @default.
- W2129718823 doi "https://doi.org/10.1111/j.1365-2699.2004.01068.x" @default.
- W2129718823 hasPublicationYear "2004" @default.
- W2129718823 type Work @default.
- W2129718823 sameAs 2129718823 @default.
- W2129718823 citedByCount "174" @default.
- W2129718823 countsByYear W21297188232012 @default.
- W2129718823 countsByYear W21297188232013 @default.
- W2129718823 countsByYear W21297188232014 @default.
- W2129718823 countsByYear W21297188232015 @default.
- W2129718823 countsByYear W21297188232016 @default.
- W2129718823 countsByYear W21297188232017 @default.
- W2129718823 countsByYear W21297188232018 @default.
- W2129718823 countsByYear W21297188232019 @default.
- W2129718823 countsByYear W21297188232020 @default.
- W2129718823 countsByYear W21297188232021 @default.
- W2129718823 countsByYear W21297188232022 @default.
- W2129718823 countsByYear W21297188232023 @default.
- W2129718823 crossrefType "journal-article" @default.
- W2129718823 hasAuthorship W2129718823A5022309284 @default.
- W2129718823 hasAuthorship W2129718823A5050869955 @default.
- W2129718823 hasConcept C123575903 @default.
- W2129718823 hasConcept C125471540 @default.
- W2129718823 hasConcept C140345934 @default.
- W2129718823 hasConcept C142724271 @default.
- W2129718823 hasConcept C166957645 @default.
- W2129718823 hasConcept C177882397 @default.
- W2129718823 hasConcept C188382862 @default.
- W2129718823 hasConcept C18903297 @default.
- W2129718823 hasConcept C205649164 @default.
- W2129718823 hasConcept C2776133958 @default.
- W2129718823 hasConcept C2778234026 @default.
- W2129718823 hasConcept C2778611284 @default.
- W2129718823 hasConcept C2911002212 @default.
- W2129718823 hasConcept C53570757 @default.
- W2129718823 hasConcept C71924100 @default.
- W2129718823 hasConcept C86803240 @default.
- W2129718823 hasConceptScore W2129718823C123575903 @default.
- W2129718823 hasConceptScore W2129718823C125471540 @default.
- W2129718823 hasConceptScore W2129718823C140345934 @default.
- W2129718823 hasConceptScore W2129718823C142724271 @default.
- W2129718823 hasConceptScore W2129718823C166957645 @default.
- W2129718823 hasConceptScore W2129718823C177882397 @default.
- W2129718823 hasConceptScore W2129718823C188382862 @default.