Matches in SemOpenAlex for { <https://semopenalex.org/work/W2129796710> ?p ?o ?g. }
- W2129796710 abstract "Abstract Background An efficient and reliable parameter estimation method is essential for the creation of biological models using ordinary differential equation (ODE). Most of the existing estimation methods involve finding the global minimum of data fitting residuals over the entire parameter space simultaneously. Unfortunately, the associated computational requirement often becomes prohibitively high due to the large number of parameters and the lack of complete parameter identifiability (i.e. not all parameters can be uniquely identified). Results In this work, an incremental approach was applied to the parameter estimation of ODE models from concentration time profiles. Particularly, the method was developed to address a commonly encountered circumstance in the modeling of metabolic networks, where the number of metabolic fluxes (reaction rates) exceeds that of metabolites (chemical species). Here, the minimization of model residuals was performed over a subset of the parameter space that is associated with the degrees of freedom in the dynamic flux estimation from the concentration time-slopes. The efficacy of this method was demonstrated using two generalized mass action (GMA) models, where the method significantly outperformed single-step estimations. In addition, an extension of the estimation method to handle missing data is also presented. Conclusions The proposed incremental estimation method is able to tackle the issue on the lack of complete parameter identifiability and to significantly reduce the computational efforts in estimating model parameters, which will facilitate kinetic modeling of genome-scale cellular metabolism in the future." @default.
- W2129796710 created "2016-06-24" @default.
- W2129796710 creator A5009763658 @default.
- W2129796710 creator A5054672110 @default.
- W2129796710 creator A5059291611 @default.
- W2129796710 date "2012-11-21" @default.
- W2129796710 modified "2023-10-18" @default.
- W2129796710 title "Incremental parameter estimation of kinetic metabolic network models" @default.
- W2129796710 cites W1502529406 @default.
- W2129796710 cites W1516282902 @default.
- W2129796710 cites W1581582023 @default.
- W2129796710 cites W1600765471 @default.
- W2129796710 cites W1964202435 @default.
- W2129796710 cites W1967542684 @default.
- W2129796710 cites W1982258483 @default.
- W2129796710 cites W2025299343 @default.
- W2129796710 cites W2034062644 @default.
- W2129796710 cites W2063565911 @default.
- W2129796710 cites W2067957566 @default.
- W2129796710 cites W2070600291 @default.
- W2129796710 cites W2078461537 @default.
- W2129796710 cites W2078955035 @default.
- W2129796710 cites W2087752119 @default.
- W2129796710 cites W2088343152 @default.
- W2129796710 cites W2100169396 @default.
- W2129796710 cites W2104004040 @default.
- W2129796710 cites W2107080166 @default.
- W2129796710 cites W2121008927 @default.
- W2129796710 cites W2125318412 @default.
- W2129796710 cites W2136109194 @default.
- W2129796710 cites W2136692693 @default.
- W2129796710 cites W2142635246 @default.
- W2129796710 cites W2150271534 @default.
- W2129796710 cites W2165603655 @default.
- W2129796710 cites W2168648059 @default.
- W2129796710 cites W2170484057 @default.
- W2129796710 cites W2266120170 @default.
- W2129796710 cites W4298255709 @default.
- W2129796710 doi "https://doi.org/10.1186/1752-0509-6-142" @default.
- W2129796710 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3568022" @default.
- W2129796710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23171810" @default.
- W2129796710 hasPublicationYear "2012" @default.
- W2129796710 type Work @default.
- W2129796710 sameAs 2129796710 @default.
- W2129796710 citedByCount "27" @default.
- W2129796710 countsByYear W21297967102013 @default.
- W2129796710 countsByYear W21297967102014 @default.
- W2129796710 countsByYear W21297967102015 @default.
- W2129796710 countsByYear W21297967102016 @default.
- W2129796710 countsByYear W21297967102017 @default.
- W2129796710 countsByYear W21297967102019 @default.
- W2129796710 countsByYear W21297967102021 @default.
- W2129796710 countsByYear W21297967102022 @default.
- W2129796710 countsByYear W21297967102023 @default.
- W2129796710 crossrefType "journal-article" @default.
- W2129796710 hasAuthorship W2129796710A5009763658 @default.
- W2129796710 hasAuthorship W2129796710A5054672110 @default.
- W2129796710 hasAuthorship W2129796710A5059291611 @default.
- W2129796710 hasBestOaLocation W21297967101 @default.
- W2129796710 hasConcept C101810790 @default.
- W2129796710 hasConcept C105795698 @default.
- W2129796710 hasConcept C11413529 @default.
- W2129796710 hasConcept C119857082 @default.
- W2129796710 hasConcept C122770356 @default.
- W2129796710 hasConcept C126255220 @default.
- W2129796710 hasConcept C134306372 @default.
- W2129796710 hasConcept C147764199 @default.
- W2129796710 hasConcept C152662350 @default.
- W2129796710 hasConcept C162324750 @default.
- W2129796710 hasConcept C167928553 @default.
- W2129796710 hasConcept C186060115 @default.
- W2129796710 hasConcept C187736073 @default.
- W2129796710 hasConcept C28826006 @default.
- W2129796710 hasConcept C33923547 @default.
- W2129796710 hasConcept C34862557 @default.
- W2129796710 hasConcept C41008148 @default.
- W2129796710 hasConcept C51544822 @default.
- W2129796710 hasConcept C60644358 @default.
- W2129796710 hasConcept C73586568 @default.
- W2129796710 hasConcept C78045399 @default.
- W2129796710 hasConcept C86803240 @default.
- W2129796710 hasConcept C96250715 @default.
- W2129796710 hasConceptScore W2129796710C101810790 @default.
- W2129796710 hasConceptScore W2129796710C105795698 @default.
- W2129796710 hasConceptScore W2129796710C11413529 @default.
- W2129796710 hasConceptScore W2129796710C119857082 @default.
- W2129796710 hasConceptScore W2129796710C122770356 @default.
- W2129796710 hasConceptScore W2129796710C126255220 @default.
- W2129796710 hasConceptScore W2129796710C134306372 @default.
- W2129796710 hasConceptScore W2129796710C147764199 @default.
- W2129796710 hasConceptScore W2129796710C152662350 @default.
- W2129796710 hasConceptScore W2129796710C162324750 @default.
- W2129796710 hasConceptScore W2129796710C167928553 @default.
- W2129796710 hasConceptScore W2129796710C186060115 @default.
- W2129796710 hasConceptScore W2129796710C187736073 @default.
- W2129796710 hasConceptScore W2129796710C28826006 @default.
- W2129796710 hasConceptScore W2129796710C33923547 @default.
- W2129796710 hasConceptScore W2129796710C34862557 @default.
- W2129796710 hasConceptScore W2129796710C41008148 @default.
- W2129796710 hasConceptScore W2129796710C51544822 @default.