Matches in SemOpenAlex for { <https://semopenalex.org/work/W2129860849> ?p ?o ?g. }
- W2129860849 endingPage "e61318" @default.
- W2129860849 startingPage "e61318" @default.
- W2129860849 abstract "Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically heterogeneous cancer cell lines have unveiled multiple relationships between genomic alterations and drug responses. Various computational approaches have been proposed to predict sensitivity based on genomic features, while others have used the chemical properties of the drugs to ascertain their effect. In an effort to integrate these complementary approaches, we developed machine learning models to predict the response of cancer cell lines to drug treatment, quantified through IC50 values, based on both the genomic features of the cell lines and the chemical properties of the considered drugs. Models predicted IC50 values in a 8-fold cross-validation and an independent blind test with coefficient of determination R2 of 0.72 and 0.64 respectively. Furthermore, models were able to predict with comparable accuracy (R2 of 0.61) IC50s of cell lines from a tissue not used in the training stage. Our in silico models can be used to optimise the experimental design of drug-cell screenings by estimating a large proportion of missing IC50 values rather than experimentally measuring them. The implications of our results go beyond virtual drug screening design: potentially thousands of drugs could be probed in silico to systematically test their potential efficacy as anti-tumour agents based on their structure, thus providing a computational framework to identify new drug repositioning opportunities as well as ultimately be useful for personalized medicine by linking the genomic traits of patients to drug sensitivity." @default.
- W2129860849 created "2016-06-24" @default.
- W2129860849 creator A5005499510 @default.
- W2129860849 creator A5005597587 @default.
- W2129860849 creator A5055060401 @default.
- W2129860849 creator A5060699951 @default.
- W2129860849 creator A5080415325 @default.
- W2129860849 creator A5084431909 @default.
- W2129860849 creator A5085472676 @default.
- W2129860849 date "2013-04-30" @default.
- W2129860849 modified "2023-10-16" @default.
- W2129860849 title "Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic and Chemical Properties" @default.
- W2129860849 cites W1967078702 @default.
- W2129860849 cites W1970957413 @default.
- W2129860849 cites W1988665501 @default.
- W2129860849 cites W1992407562 @default.
- W2129860849 cites W2006944463 @default.
- W2129860849 cites W2016849135 @default.
- W2129860849 cites W2021630848 @default.
- W2129860849 cites W2026548544 @default.
- W2129860849 cites W2038853826 @default.
- W2129860849 cites W2043398720 @default.
- W2129860849 cites W2044960952 @default.
- W2129860849 cites W2049331434 @default.
- W2129860849 cites W2059232554 @default.
- W2129860849 cites W2062941476 @default.
- W2129860849 cites W2063928888 @default.
- W2129860849 cites W2075529464 @default.
- W2129860849 cites W2080686146 @default.
- W2129860849 cites W2097561421 @default.
- W2129860849 cites W2098426299 @default.
- W2129860849 cites W2103196126 @default.
- W2129860849 cites W2110729724 @default.
- W2129860849 cites W2121604817 @default.
- W2129860849 cites W2122825543 @default.
- W2129860849 cites W2123775239 @default.
- W2129860849 cites W2125789330 @default.
- W2129860849 cites W2135890487 @default.
- W2129860849 cites W2137262074 @default.
- W2129860849 cites W2139156287 @default.
- W2129860849 cites W2143908786 @default.
- W2129860849 cites W2149453908 @default.
- W2129860849 cites W2159887157 @default.
- W2129860849 cites W2162946128 @default.
- W2129860849 cites W2170170610 @default.
- W2129860849 cites W2312361311 @default.
- W2129860849 cites W2911964244 @default.
- W2129860849 doi "https://doi.org/10.1371/journal.pone.0061318" @default.
- W2129860849 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3640019" @default.
- W2129860849 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23646105" @default.
- W2129860849 hasPublicationYear "2013" @default.
- W2129860849 type Work @default.
- W2129860849 sameAs 2129860849 @default.
- W2129860849 citedByCount "402" @default.
- W2129860849 countsByYear W21298608492013 @default.
- W2129860849 countsByYear W21298608492014 @default.
- W2129860849 countsByYear W21298608492015 @default.
- W2129860849 countsByYear W21298608492016 @default.
- W2129860849 countsByYear W21298608492017 @default.
- W2129860849 countsByYear W21298608492018 @default.
- W2129860849 countsByYear W21298608492019 @default.
- W2129860849 countsByYear W21298608492020 @default.
- W2129860849 countsByYear W21298608492021 @default.
- W2129860849 countsByYear W21298608492022 @default.
- W2129860849 countsByYear W21298608492023 @default.
- W2129860849 crossrefType "journal-article" @default.
- W2129860849 hasAuthorship W2129860849A5005499510 @default.
- W2129860849 hasAuthorship W2129860849A5005597587 @default.
- W2129860849 hasAuthorship W2129860849A5055060401 @default.
- W2129860849 hasAuthorship W2129860849A5060699951 @default.
- W2129860849 hasAuthorship W2129860849A5080415325 @default.
- W2129860849 hasAuthorship W2129860849A5084431909 @default.
- W2129860849 hasAuthorship W2129860849A5085472676 @default.
- W2129860849 hasBestOaLocation W21298608491 @default.
- W2129860849 hasConcept C103697762 @default.
- W2129860849 hasConcept C104317684 @default.
- W2129860849 hasConcept C119857082 @default.
- W2129860849 hasConcept C121608353 @default.
- W2129860849 hasConcept C127413603 @default.
- W2129860849 hasConcept C21200559 @default.
- W2129860849 hasConcept C24326235 @default.
- W2129860849 hasConcept C2775905019 @default.
- W2129860849 hasConcept C2780035454 @default.
- W2129860849 hasConcept C2994119904 @default.
- W2129860849 hasConcept C2994372470 @default.
- W2129860849 hasConcept C3020340455 @default.
- W2129860849 hasConcept C41008148 @default.
- W2129860849 hasConcept C45804977 @default.
- W2129860849 hasConcept C54355233 @default.
- W2129860849 hasConcept C60644358 @default.
- W2129860849 hasConcept C70721500 @default.
- W2129860849 hasConcept C74187038 @default.
- W2129860849 hasConcept C86803240 @default.
- W2129860849 hasConcept C96232424 @default.
- W2129860849 hasConcept C98274493 @default.
- W2129860849 hasConceptScore W2129860849C103697762 @default.
- W2129860849 hasConceptScore W2129860849C104317684 @default.
- W2129860849 hasConceptScore W2129860849C119857082 @default.