Matches in SemOpenAlex for { <https://semopenalex.org/work/W2129893292> ?p ?o ?g. }
- W2129893292 endingPage "266" @default.
- W2129893292 startingPage "251" @default.
- W2129893292 abstract "There is growing interest in using spatially explicit, individual-based forest simulation models to explore the ecological and silvicultural consequences of various harvesting regimes. However, simulating the dynamics of managed forests requires harvesting algorithms capable of accurately mimicking the harvest regimes of interest. Under selection silviculture, trees are harvested individually or in small groups, with the aim of retaining trees across a full range of size classes. An algorithm that reproduces selection harvesting must therefore be able to recreate both the spatial and the structural patterns of harvest. Here we introduce a selection harvest algorithm that simulates harvests as a contagious spatial process in which the cutting of one tree affects the probability that neighboring trees are also cut. Three simple and intuitive parameters are required to implement this process: (1) the probability of cutting a “target” tree (Pt) (often a function of tree size), (2) the probability of cutting its nearest neighbor (Pn), and (3) the total number of target trees to cut (Nt). Specification of these parameters allows representation of both the spatial and the structural patterns of harvest expected under selection silviculture. Based on this simple process, we built two different versions of the harvesting algorithm. An “empirical” algorithm was designed and calibrated to reproduce the observed spatial and size distribution of stumps (harvested trees) at a study site in central Ontario, and was successful in reproducing harvesting patterns found in the field, notably variability in the cluster size of harvested trees. The “user-defined” algorithm implements alternative harvesting regimes (user-defined harvest targets), which may differ in the intensity of harvesting, the size-specificity of harvesting, and the spatial pattern of harvesting. We show that the user-defined harvesting algorithm succeeds in meeting harvest targets specified by the user (e.g., size class distribution and basal area of trees harvested), while simultaneously adjusting the gap size specified (i.e., the distribution of harvested trees per cluster). Incorporation of this harvesting algorithm into spatially explicit, individual-based models will permit analyses of long-term responses of forest stands to harvesting scenarios that more realistically capture the complex patterns of within-stand variability generated by selection silviculture as practiced in actual managed forests." @default.
- W2129893292 created "2016-06-24" @default.
- W2129893292 creator A5000618157 @default.
- W2129893292 creator A5045205524 @default.
- W2129893292 creator A5046443626 @default.
- W2129893292 creator A5051689864 @default.
- W2129893292 date "2008-03-01" @default.
- W2129893292 modified "2023-09-25" @default.
- W2129893292 title "A selection harvesting algorithm for use in spatially explicit individual-based forest simulation models" @default.
- W2129893292 cites W1514651935 @default.
- W2129893292 cites W1818937361 @default.
- W2129893292 cites W19546808 @default.
- W2129893292 cites W1965861520 @default.
- W2129893292 cites W1966532532 @default.
- W2129893292 cites W1968189569 @default.
- W2129893292 cites W1982886002 @default.
- W2129893292 cites W1984144347 @default.
- W2129893292 cites W2001288816 @default.
- W2129893292 cites W2010490787 @default.
- W2129893292 cites W2012950077 @default.
- W2129893292 cites W2014201537 @default.
- W2129893292 cites W2018009824 @default.
- W2129893292 cites W2020837601 @default.
- W2129893292 cites W2021073050 @default.
- W2129893292 cites W2046112876 @default.
- W2129893292 cites W2047130393 @default.
- W2129893292 cites W2075320403 @default.
- W2129893292 cites W2082610597 @default.
- W2129893292 cites W2115958497 @default.
- W2129893292 cites W2128184551 @default.
- W2129893292 cites W2133256294 @default.
- W2129893292 cites W2139965678 @default.
- W2129893292 cites W2151458409 @default.
- W2129893292 cites W2155310917 @default.
- W2129893292 cites W2157410194 @default.
- W2129893292 cites W2159641034 @default.
- W2129893292 cites W2162570515 @default.
- W2129893292 cites W2179732957 @default.
- W2129893292 cites W2320604410 @default.
- W2129893292 cites W2406845681 @default.
- W2129893292 cites W4241415242 @default.
- W2129893292 cites W956150423 @default.
- W2129893292 doi "https://doi.org/10.1016/j.ecolmodel.2007.09.007" @default.
- W2129893292 hasPublicationYear "2008" @default.
- W2129893292 type Work @default.
- W2129893292 sameAs 2129893292 @default.
- W2129893292 citedByCount "20" @default.
- W2129893292 countsByYear W21298932922013 @default.
- W2129893292 countsByYear W21298932922014 @default.
- W2129893292 countsByYear W21298932922015 @default.
- W2129893292 countsByYear W21298932922016 @default.
- W2129893292 countsByYear W21298932922019 @default.
- W2129893292 crossrefType "journal-article" @default.
- W2129893292 hasAuthorship W2129893292A5000618157 @default.
- W2129893292 hasAuthorship W2129893292A5045205524 @default.
- W2129893292 hasAuthorship W2129893292A5046443626 @default.
- W2129893292 hasAuthorship W2129893292A5051689864 @default.
- W2129893292 hasConcept C111919701 @default.
- W2129893292 hasConcept C113174947 @default.
- W2129893292 hasConcept C11413529 @default.
- W2129893292 hasConcept C119857082 @default.
- W2129893292 hasConcept C134306372 @default.
- W2129893292 hasConcept C159985019 @default.
- W2129893292 hasConcept C17744445 @default.
- W2129893292 hasConcept C18903297 @default.
- W2129893292 hasConcept C192562407 @default.
- W2129893292 hasConcept C199539241 @default.
- W2129893292 hasConcept C204323151 @default.
- W2129893292 hasConcept C2775966360 @default.
- W2129893292 hasConcept C2776359362 @default.
- W2129893292 hasConcept C33923547 @default.
- W2129893292 hasConcept C39432304 @default.
- W2129893292 hasConcept C41008148 @default.
- W2129893292 hasConcept C54286561 @default.
- W2129893292 hasConcept C81917197 @default.
- W2129893292 hasConcept C86803240 @default.
- W2129893292 hasConcept C94625758 @default.
- W2129893292 hasConcept C98045186 @default.
- W2129893292 hasConceptScore W2129893292C111919701 @default.
- W2129893292 hasConceptScore W2129893292C113174947 @default.
- W2129893292 hasConceptScore W2129893292C11413529 @default.
- W2129893292 hasConceptScore W2129893292C119857082 @default.
- W2129893292 hasConceptScore W2129893292C134306372 @default.
- W2129893292 hasConceptScore W2129893292C159985019 @default.
- W2129893292 hasConceptScore W2129893292C17744445 @default.
- W2129893292 hasConceptScore W2129893292C18903297 @default.
- W2129893292 hasConceptScore W2129893292C192562407 @default.
- W2129893292 hasConceptScore W2129893292C199539241 @default.
- W2129893292 hasConceptScore W2129893292C204323151 @default.
- W2129893292 hasConceptScore W2129893292C2775966360 @default.
- W2129893292 hasConceptScore W2129893292C2776359362 @default.
- W2129893292 hasConceptScore W2129893292C33923547 @default.
- W2129893292 hasConceptScore W2129893292C39432304 @default.
- W2129893292 hasConceptScore W2129893292C41008148 @default.
- W2129893292 hasConceptScore W2129893292C54286561 @default.
- W2129893292 hasConceptScore W2129893292C81917197 @default.
- W2129893292 hasConceptScore W2129893292C86803240 @default.
- W2129893292 hasConceptScore W2129893292C94625758 @default.