Matches in SemOpenAlex for { <https://semopenalex.org/work/W2129904857> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2129904857 endingPage "642" @default.
- W2129904857 startingPage "633" @default.
- W2129904857 abstract "This paper presents a learning approach which identifies and eliminates noisy examples (outliers) to improve the quality of training on engineering data and the effectiveness of the learned concept descriptions. In this approach, one (1) acquires initial concept descriptions from preclassified attributional training data, (2) optimizes concept descriptions to improve their descriptiveness, (3) applies optimized concept descriptions to filtrate/improve initial training data, and (4) repeats the learning process from improved training data. The implemented algorithm extends the widely used open loop learning approach (divided into concept acquisition phase and concept optimization phase) into a closed loop learning approach. In the closed loop learning approach, learned and optimized concept descriptions are fed back and used to filter training data for the next learning iteration. Thus, the learning program is run at least two times; the first time to acquire concept descriptions for the optimization step, and the second time to acquire the final descriptions. In this approach, noise is detected on the concept description level rather than on the raw data level — where the evaluation of raw data can be impossible since the training data may be composed of numeric, symbolic, relational and structural attributes. This method is successfully applied to different engineering problems, and its effectiveness is illustrated for three qualitatively different problems in computer vision." @default.
- W2129904857 created "2016-06-24" @default.
- W2129904857 creator A5010289602 @default.
- W2129904857 creator A5020708291 @default.
- W2129904857 creator A5058156010 @default.
- W2129904857 date "1996-01-01" @default.
- W2129904857 modified "2023-09-27" @default.
- W2129904857 title "Learning with noise in engineering domains" @default.
- W2129904857 cites W1622914209 @default.
- W2129904857 cites W2009086487 @default.
- W2129904857 cites W2075862296 @default.
- W2129904857 cites W2085261163 @default.
- W2129904857 cites W2132513611 @default.
- W2129904857 cites W4235570552 @default.
- W2129904857 doi "https://doi.org/10.1007/3-540-61286-6_187" @default.
- W2129904857 hasPublicationYear "1996" @default.
- W2129904857 type Work @default.
- W2129904857 sameAs 2129904857 @default.
- W2129904857 citedByCount "0" @default.
- W2129904857 crossrefType "book-chapter" @default.
- W2129904857 hasAuthorship W2129904857A5010289602 @default.
- W2129904857 hasAuthorship W2129904857A5020708291 @default.
- W2129904857 hasAuthorship W2129904857A5058156010 @default.
- W2129904857 hasConcept C106131492 @default.
- W2129904857 hasConcept C115961682 @default.
- W2129904857 hasConcept C119857082 @default.
- W2129904857 hasConcept C132964779 @default.
- W2129904857 hasConcept C154945302 @default.
- W2129904857 hasConcept C199360897 @default.
- W2129904857 hasConcept C31972630 @default.
- W2129904857 hasConcept C41008148 @default.
- W2129904857 hasConcept C79337645 @default.
- W2129904857 hasConcept C98045186 @default.
- W2129904857 hasConcept C99498987 @default.
- W2129904857 hasConceptScore W2129904857C106131492 @default.
- W2129904857 hasConceptScore W2129904857C115961682 @default.
- W2129904857 hasConceptScore W2129904857C119857082 @default.
- W2129904857 hasConceptScore W2129904857C132964779 @default.
- W2129904857 hasConceptScore W2129904857C154945302 @default.
- W2129904857 hasConceptScore W2129904857C199360897 @default.
- W2129904857 hasConceptScore W2129904857C31972630 @default.
- W2129904857 hasConceptScore W2129904857C41008148 @default.
- W2129904857 hasConceptScore W2129904857C79337645 @default.
- W2129904857 hasConceptScore W2129904857C98045186 @default.
- W2129904857 hasConceptScore W2129904857C99498987 @default.
- W2129904857 hasLocation W21299048571 @default.
- W2129904857 hasOpenAccess W2129904857 @default.
- W2129904857 hasPrimaryLocation W21299048571 @default.
- W2129904857 hasRelatedWork W1543309683 @default.
- W2129904857 hasRelatedWork W1552228685 @default.
- W2129904857 hasRelatedWork W1590166619 @default.
- W2129904857 hasRelatedWork W1738398458 @default.
- W2129904857 hasRelatedWork W1894395204 @default.
- W2129904857 hasRelatedWork W1940325842 @default.
- W2129904857 hasRelatedWork W1999038366 @default.
- W2129904857 hasRelatedWork W2023871516 @default.
- W2129904857 hasRelatedWork W2042729981 @default.
- W2129904857 hasRelatedWork W2097512793 @default.
- W2129904857 hasRelatedWork W2108718253 @default.
- W2129904857 hasRelatedWork W2118596731 @default.
- W2129904857 hasRelatedWork W2132923082 @default.
- W2129904857 hasRelatedWork W2146602504 @default.
- W2129904857 hasRelatedWork W2518317203 @default.
- W2129904857 hasRelatedWork W2743293577 @default.
- W2129904857 hasRelatedWork W2787607521 @default.
- W2129904857 hasRelatedWork W2944039431 @default.
- W2129904857 hasRelatedWork W2962812272 @default.
- W2129904857 hasRelatedWork W3037772438 @default.
- W2129904857 isParatext "false" @default.
- W2129904857 isRetracted "false" @default.
- W2129904857 magId "2129904857" @default.
- W2129904857 workType "book-chapter" @default.