Matches in SemOpenAlex for { <https://semopenalex.org/work/W2129908023> ?p ?o ?g. }
- W2129908023 endingPage "968" @default.
- W2129908023 startingPage "955" @default.
- W2129908023 abstract "This paper presents a review of the current literature on rough-set- and near-set-based approaches to solving various problems in medical imaging such as medical image segmentation, object extraction, and image classification. Rough set frameworks hybridized with other computational intelligence technologies that include neural networks, particle swarm optimization, support vector machines, and fuzzy sets are also presented. In addition, a brief introduction to near sets and near images with an application to MRI images is given. Near sets offer a generalization of traditional rough set theory and a promising approach to solving the medical image correspondence problem as well as an approach to classifying perceptual objects by means of features in solving medical imaging problems. Other generalizations of rough sets such as neighborhood systems, shadowed sets, and tolerance spaces are also briefly considered in solving a variety of medical imaging problems. Challenges to be addressed and future directions of research are identified and an extensive bibliography is also included." @default.
- W2129908023 created "2016-06-24" @default.
- W2129908023 creator A5051932112 @default.
- W2129908023 creator A5054322944 @default.
- W2129908023 creator A5070137989 @default.
- W2129908023 creator A5074462232 @default.
- W2129908023 creator A5087542455 @default.
- W2129908023 date "2009-11-01" @default.
- W2129908023 modified "2023-09-27" @default.
- W2129908023 title "Rough Sets and Near Sets in Medical Imaging: A Review" @default.
- W2129908023 cites W1489191313 @default.
- W2129908023 cites W1513494614 @default.
- W2129908023 cites W1535857328 @default.
- W2129908023 cites W1537557831 @default.
- W2129908023 cites W1550798838 @default.
- W2129908023 cites W1552570069 @default.
- W2129908023 cites W1555798945 @default.
- W2129908023 cites W1557031672 @default.
- W2129908023 cites W1565627856 @default.
- W2129908023 cites W1571744754 @default.
- W2129908023 cites W1578460350 @default.
- W2129908023 cites W1591618909 @default.
- W2129908023 cites W1602484230 @default.
- W2129908023 cites W1604216418 @default.
- W2129908023 cites W1966906563 @default.
- W2129908023 cites W1969196353 @default.
- W2129908023 cites W1972590360 @default.
- W2129908023 cites W1997229044 @default.
- W2129908023 cites W2000158142 @default.
- W2129908023 cites W2001917229 @default.
- W2129908023 cites W2005146067 @default.
- W2129908023 cites W2010352504 @default.
- W2129908023 cites W2012352792 @default.
- W2129908023 cites W2015336432 @default.
- W2129908023 cites W2022262325 @default.
- W2129908023 cites W2025215609 @default.
- W2129908023 cites W2028973107 @default.
- W2129908023 cites W2033500239 @default.
- W2129908023 cites W2034341136 @default.
- W2129908023 cites W2035165861 @default.
- W2129908023 cites W2038770572 @default.
- W2129908023 cites W2047863499 @default.
- W2129908023 cites W2048596832 @default.
- W2129908023 cites W2051264127 @default.
- W2129908023 cites W2057624885 @default.
- W2129908023 cites W2063409192 @default.
- W2129908023 cites W2079143132 @default.
- W2129908023 cites W2082173396 @default.
- W2129908023 cites W2082731470 @default.
- W2129908023 cites W2096430891 @default.
- W2129908023 cites W2097798423 @default.
- W2129908023 cites W2103535650 @default.
- W2129908023 cites W2113591863 @default.
- W2129908023 cites W2114832876 @default.
- W2129908023 cites W2115495120 @default.
- W2129908023 cites W2119722504 @default.
- W2129908023 cites W2121477184 @default.
- W2129908023 cites W2121927366 @default.
- W2129908023 cites W2123509054 @default.
- W2129908023 cites W2133420725 @default.
- W2129908023 cites W2134158406 @default.
- W2129908023 cites W2143040521 @default.
- W2129908023 cites W2143451122 @default.
- W2129908023 cites W2144432839 @default.
- W2129908023 cites W2148386824 @default.
- W2129908023 cites W2149145103 @default.
- W2129908023 cites W2151326023 @default.
- W2129908023 cites W2153242206 @default.
- W2129908023 cites W2163255932 @default.
- W2129908023 cites W2165401422 @default.
- W2129908023 cites W2271862924 @default.
- W2129908023 cites W2536123655 @default.
- W2129908023 cites W2570343052 @default.
- W2129908023 cites W4231143021 @default.
- W2129908023 cites W4249947376 @default.
- W2129908023 doi "https://doi.org/10.1109/titb.2009.2017017" @default.
- W2129908023 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19304490" @default.
- W2129908023 hasPublicationYear "2009" @default.
- W2129908023 type Work @default.
- W2129908023 sameAs 2129908023 @default.
- W2129908023 citedByCount "136" @default.
- W2129908023 countsByYear W21299080232012 @default.
- W2129908023 countsByYear W21299080232013 @default.
- W2129908023 countsByYear W21299080232014 @default.
- W2129908023 countsByYear W21299080232015 @default.
- W2129908023 countsByYear W21299080232016 @default.
- W2129908023 countsByYear W21299080232017 @default.
- W2129908023 countsByYear W21299080232018 @default.
- W2129908023 countsByYear W21299080232019 @default.
- W2129908023 countsByYear W21299080232020 @default.
- W2129908023 countsByYear W21299080232021 @default.
- W2129908023 countsByYear W21299080232022 @default.
- W2129908023 countsByYear W21299080232023 @default.
- W2129908023 crossrefType "journal-article" @default.
- W2129908023 hasAuthorship W2129908023A5051932112 @default.
- W2129908023 hasAuthorship W2129908023A5054322944 @default.
- W2129908023 hasAuthorship W2129908023A5070137989 @default.
- W2129908023 hasAuthorship W2129908023A5074462232 @default.