Matches in SemOpenAlex for { <https://semopenalex.org/work/W2130060388> ?p ?o ?g. }
- W2130060388 endingPage "1926" @default.
- W2130060388 startingPage "1903" @default.
- W2130060388 abstract "Abstract Genotyping-by-sequencing (GBS) technologies have proven capacity for delivering large numbers of marker genotypes with potentially less ascertainment bias than standard single nucleotide polymorphism (SNP) arrays. Therefore, GBS has become an attractive alternative technology for genomic selection. However, the use of GBS data poses important challenges, and the accuracy of genomic prediction using GBS is currently undergoing investigation in several crops, including maize, wheat, and cassava. The main objective of this study was to evaluate various methods for incorporating GBS information and compare them with pedigree models for predicting genetic values of lines from two maize populations evaluated for different traits measured in different environments (experiments 1 and 2). Given that GBS data come with a large percentage of uncalled genotypes, we evaluated methods using nonimputed, imputed, and GBS-inferred haplotypes of different lengths (short or long). GBS and pedigree data were incorporated into statistical models using either the genomic best linear unbiased predictors (GBLUP) or the reproducing kernel Hilbert spaces (RKHS) regressions, and prediction accuracy was quantified using cross-validation methods. The following results were found: relative to pedigree or marker-only models, there were consistent gains in prediction accuracy by combining pedigree and GBS data; there was increased predictive ability when using imputed or nonimputed GBS data over inferred haplotype in experiment 1, or nonimputed GBS and information-based imputed short and long haplotypes, as compared to the other methods in experiment 2; the level of prediction accuracy achieved using GBS data in experiment 2 is comparable to those reported by previous authors who analyzed this data set using SNP arrays; and GBLUP and RKHS models with pedigree with nonimputed and imputed GBS data provided the best prediction correlations for the three traits in experiment 1, whereas for experiment 2 RKHS provided slightly better prediction than GBLUP for drought-stressed environments, and both models provided similar predictions in well-watered environments." @default.
- W2130060388 created "2016-06-24" @default.
- W2130060388 creator A5005458169 @default.
- W2130060388 creator A5017478216 @default.
- W2130060388 creator A5020150778 @default.
- W2130060388 creator A5039135515 @default.
- W2130060388 creator A5044432269 @default.
- W2130060388 creator A5045059219 @default.
- W2130060388 creator A5045062917 @default.
- W2130060388 creator A5055906685 @default.
- W2130060388 creator A5058909653 @default.
- W2130060388 creator A5063947394 @default.
- W2130060388 creator A5071015273 @default.
- W2130060388 creator A5085735822 @default.
- W2130060388 creator A5088900171 @default.
- W2130060388 date "2013-11-01" @default.
- W2130060388 modified "2023-10-16" @default.
- W2130060388 title "Genomic Prediction in Maize Breeding Populations with Genotyping-by-Sequencing" @default.
- W2130060388 cites W1928998639 @default.
- W2130060388 cites W1973166524 @default.
- W2130060388 cites W1988200920 @default.
- W2130060388 cites W1993490180 @default.
- W2130060388 cites W2007169373 @default.
- W2130060388 cites W2024278789 @default.
- W2130060388 cites W2066745970 @default.
- W2130060388 cites W2067252216 @default.
- W2130060388 cites W2067715889 @default.
- W2130060388 cites W2090447057 @default.
- W2130060388 cites W2095763520 @default.
- W2130060388 cites W2103441770 @default.
- W2130060388 cites W2106260006 @default.
- W2130060388 cites W2106963975 @default.
- W2130060388 cites W2108234281 @default.
- W2130060388 cites W2109349581 @default.
- W2130060388 cites W2110035718 @default.
- W2130060388 cites W2113262654 @default.
- W2130060388 cites W2114849840 @default.
- W2130060388 cites W2124390519 @default.
- W2130060388 cites W2127843966 @default.
- W2130060388 cites W2128343509 @default.
- W2130060388 cites W2130434665 @default.
- W2130060388 cites W2132213462 @default.
- W2130060388 cites W2148306906 @default.
- W2130060388 cites W2151391832 @default.
- W2130060388 cites W2151958077 @default.
- W2130060388 cites W2154978106 @default.
- W2130060388 cites W2159474015 @default.
- W2130060388 cites W2164056841 @default.
- W2130060388 cites W2171169861 @default.
- W2130060388 doi "https://doi.org/10.1534/g3.113.008227" @default.
- W2130060388 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3815055" @default.
- W2130060388 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24022750" @default.
- W2130060388 hasPublicationYear "2013" @default.
- W2130060388 type Work @default.
- W2130060388 sameAs 2130060388 @default.
- W2130060388 citedByCount "198" @default.
- W2130060388 countsByYear W21300603882013 @default.
- W2130060388 countsByYear W21300603882014 @default.
- W2130060388 countsByYear W21300603882015 @default.
- W2130060388 countsByYear W21300603882016 @default.
- W2130060388 countsByYear W21300603882017 @default.
- W2130060388 countsByYear W21300603882018 @default.
- W2130060388 countsByYear W21300603882019 @default.
- W2130060388 countsByYear W21300603882020 @default.
- W2130060388 countsByYear W21300603882021 @default.
- W2130060388 countsByYear W21300603882022 @default.
- W2130060388 countsByYear W21300603882023 @default.
- W2130060388 crossrefType "journal-article" @default.
- W2130060388 hasAuthorship W2130060388A5005458169 @default.
- W2130060388 hasAuthorship W2130060388A5017478216 @default.
- W2130060388 hasAuthorship W2130060388A5020150778 @default.
- W2130060388 hasAuthorship W2130060388A5039135515 @default.
- W2130060388 hasAuthorship W2130060388A5044432269 @default.
- W2130060388 hasAuthorship W2130060388A5045059219 @default.
- W2130060388 hasAuthorship W2130060388A5045062917 @default.
- W2130060388 hasAuthorship W2130060388A5055906685 @default.
- W2130060388 hasAuthorship W2130060388A5058909653 @default.
- W2130060388 hasAuthorship W2130060388A5063947394 @default.
- W2130060388 hasAuthorship W2130060388A5071015273 @default.
- W2130060388 hasAuthorship W2130060388A5085735822 @default.
- W2130060388 hasAuthorship W2130060388A5088900171 @default.
- W2130060388 hasBestOaLocation W21300603882 @default.
- W2130060388 hasConcept C103545067 @default.
- W2130060388 hasConcept C104317684 @default.
- W2130060388 hasConcept C105795698 @default.
- W2130060388 hasConcept C135763542 @default.
- W2130060388 hasConcept C153209595 @default.
- W2130060388 hasConcept C154945302 @default.
- W2130060388 hasConcept C197754878 @default.
- W2130060388 hasConcept C31467283 @default.
- W2130060388 hasConcept C33923547 @default.
- W2130060388 hasConcept C41008148 @default.
- W2130060388 hasConcept C54355233 @default.
- W2130060388 hasConcept C58041806 @default.
- W2130060388 hasConcept C70721500 @default.
- W2130060388 hasConcept C81917197 @default.
- W2130060388 hasConcept C86803240 @default.
- W2130060388 hasConcept C9357733 @default.