Matches in SemOpenAlex for { <https://semopenalex.org/work/W2130147200> ?p ?o ?g. }
- W2130147200 endingPage "5207" @default.
- W2130147200 startingPage "5182" @default.
- W2130147200 abstract "The notion of functionally graded materials (FGM) covers all domains of discrete and smooth gradation of material microstructure designed in order to obtain macroscopic features suitable for a given application. A special class of multi-phase materials with graded microstructure can be obtained at cryogenic temperatures as a result of smooth transition from the parent phase to the secondary phase. The required continuously graded material features are obtained at low temperatures via the mechanism of controlled strain induced phase transformation from the purely austenitic to the martensitic lattice (γ → α′). Several families of ductile materials are known to behave in a metastable way when strained at very low temperatures. Among them the austenitic stainless steels are extensively used to construct components of the superconducting magnets, cryogenic transfer lines and other structural members loaded in cryogenic conditions. The constitutive model used to describe mathematically the plastic strain induced phase transformation at low temperatures involves strain hardening where two fundamental effects play an important role: interaction of dislocations with the martensite inclusions and increase in material tangent stiffness due to the mixture of harder martensite with softer austenite. The interaction of dislocations with the martensite inclusions is reflected by the hardening modulus that depends on the volume fraction of martensite. Here, a linear approximation, based on the micro-mechanics analysis, is used. On the other hand, evaluation of the material tangent stiffness of two-phase continuum is based on the classical homogenization scheme and takes into account the local tangent moduli of the components, as postulated by Hill [Hill, R., 1965. A self consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222]. In the present paper, the Mori–Tanaka homogenisation scheme is applied. Both effects contribute to strong nonlinear hardening that occurs as soon as the phase transformation process begins. The material model is suitable for a wide range of temperatures, however the best results are obtained at very low temperatures, where the linearized kinetic law of phase transformation is valid [Garion, C., Skoczeń B., 2002. Modeling of plastic strain induced martensitic transformation for cryogenic applications. J. Appl. Mech. 69 (6), 755–762]. As the application field the structural members in the form of rods (cylinders) of circular cross-section, used as parts of the carrying structures, are analyzed. The required graded microstructure of the material is obtained by imposing torsion at cryogenic temperatures. Both the intensity of the phase transformation and the depth of the transformed zone is obtained by suitable kinematic control (angle of twist). The closed form solutions for the stress state and torque as a function of the angle of twist are shown." @default.
- W2130147200 created "2016-06-24" @default.
- W2130147200 creator A5043370075 @default.
- W2130147200 date "2007-08-01" @default.
- W2130147200 modified "2023-10-18" @default.
- W2130147200 title "Functionally graded structural members obtained via the low temperature strain induced phase transformation" @default.
- W2130147200 cites W1700243946 @default.
- W2130147200 cites W170916093 @default.
- W2130147200 cites W1969252929 @default.
- W2130147200 cites W1973534940 @default.
- W2130147200 cites W1974229491 @default.
- W2130147200 cites W1974453613 @default.
- W2130147200 cites W1986395572 @default.
- W2130147200 cites W1994294591 @default.
- W2130147200 cites W1997200257 @default.
- W2130147200 cites W2000224390 @default.
- W2130147200 cites W2003441198 @default.
- W2130147200 cites W2007342757 @default.
- W2130147200 cites W2016971821 @default.
- W2130147200 cites W2018516169 @default.
- W2130147200 cites W2018674787 @default.
- W2130147200 cites W2020382706 @default.
- W2130147200 cites W2022754468 @default.
- W2130147200 cites W2023331949 @default.
- W2130147200 cites W2025379976 @default.
- W2130147200 cites W2035837278 @default.
- W2130147200 cites W2035884924 @default.
- W2130147200 cites W2040810094 @default.
- W2130147200 cites W2045333742 @default.
- W2130147200 cites W2054694597 @default.
- W2130147200 cites W2062128238 @default.
- W2130147200 cites W2063414637 @default.
- W2130147200 cites W2070914803 @default.
- W2130147200 cites W2072176741 @default.
- W2130147200 cites W2072954894 @default.
- W2130147200 cites W2074176021 @default.
- W2130147200 cites W2078157118 @default.
- W2130147200 cites W2081614864 @default.
- W2130147200 cites W2086330623 @default.
- W2130147200 cites W2091727541 @default.
- W2130147200 cites W2092403851 @default.
- W2130147200 cites W2093691823 @default.
- W2130147200 cites W2096105657 @default.
- W2130147200 cites W2117536225 @default.
- W2130147200 cites W2118895810 @default.
- W2130147200 cites W2157880371 @default.
- W2130147200 cites W2165084730 @default.
- W2130147200 cites W2165879238 @default.
- W2130147200 cites W2168945465 @default.
- W2130147200 cites W2173180263 @default.
- W2130147200 cites W3166796738 @default.
- W2130147200 doi "https://doi.org/10.1016/j.ijsolstr.2006.12.032" @default.
- W2130147200 hasPublicationYear "2007" @default.
- W2130147200 type Work @default.
- W2130147200 sameAs 2130147200 @default.
- W2130147200 citedByCount "27" @default.
- W2130147200 countsByYear W21301472002012 @default.
- W2130147200 countsByYear W21301472002013 @default.
- W2130147200 countsByYear W21301472002014 @default.
- W2130147200 countsByYear W21301472002015 @default.
- W2130147200 countsByYear W21301472002016 @default.
- W2130147200 countsByYear W21301472002017 @default.
- W2130147200 countsByYear W21301472002019 @default.
- W2130147200 countsByYear W21301472002020 @default.
- W2130147200 crossrefType "journal-article" @default.
- W2130147200 hasAuthorship W2130147200A5043370075 @default.
- W2130147200 hasConcept C121332964 @default.
- W2130147200 hasConcept C130217890 @default.
- W2130147200 hasConcept C138187205 @default.
- W2130147200 hasConcept C159985019 @default.
- W2130147200 hasConcept C184050105 @default.
- W2130147200 hasConcept C18747287 @default.
- W2130147200 hasConcept C18903297 @default.
- W2130147200 hasConcept C192562407 @default.
- W2130147200 hasConcept C2524010 @default.
- W2130147200 hasConcept C2778722038 @default.
- W2130147200 hasConcept C2779227376 @default.
- W2130147200 hasConcept C33923547 @default.
- W2130147200 hasConcept C44255700 @default.
- W2130147200 hasConcept C62520636 @default.
- W2130147200 hasConcept C65590680 @default.
- W2130147200 hasConcept C79186407 @default.
- W2130147200 hasConcept C86803240 @default.
- W2130147200 hasConcept C87976508 @default.
- W2130147200 hasConcept C96288455 @default.
- W2130147200 hasConceptScore W2130147200C121332964 @default.
- W2130147200 hasConceptScore W2130147200C130217890 @default.
- W2130147200 hasConceptScore W2130147200C138187205 @default.
- W2130147200 hasConceptScore W2130147200C159985019 @default.
- W2130147200 hasConceptScore W2130147200C184050105 @default.
- W2130147200 hasConceptScore W2130147200C18747287 @default.
- W2130147200 hasConceptScore W2130147200C18903297 @default.
- W2130147200 hasConceptScore W2130147200C192562407 @default.
- W2130147200 hasConceptScore W2130147200C2524010 @default.
- W2130147200 hasConceptScore W2130147200C2778722038 @default.
- W2130147200 hasConceptScore W2130147200C2779227376 @default.
- W2130147200 hasConceptScore W2130147200C33923547 @default.
- W2130147200 hasConceptScore W2130147200C44255700 @default.