Matches in SemOpenAlex for { <https://semopenalex.org/work/W2130167438> ?p ?o ?g. }
- W2130167438 endingPage "628" @default.
- W2130167438 startingPage "608" @default.
- W2130167438 abstract "Cognitive dynamic systems provide a broadly defined platform, whereby engineering learns from cognitive neuroscience, and by the same token, cognitive neuroscience learns from engineering. The first part of the paper is of a tutorial nature, addressing recent advances in cognitive perception and cognitive control, which are the dual of each other. The study of cognitive perception, viewed from the perspective of Bayesian inference, starts with sparse coding, well known in neuroscience. However, sparse coding could become ill-posed, particularly when the signal-to-noise ratio is low. In such situations, stability is a necessary requirement, which can only be satisfied if there is sufficient information in the observables. To satisfy this requirement, the sparse-coding algorithm is augmented by the addition of information filtering (i.e., a special case of Bayesian filtering). Accordingly, the performance of sparse coding is improved under the influence of perceptual attention. This improvement enhances the cognitive perceptor to separate relevant information from irrelevant information. Next, moving into cognitive control, viewed from the perspective of Bellman's dynamic programming, two ideas are exploited: entropic state of the perceptor, and the definition of reward as an invertible function of two entropic states, namely, the current state and its immediate past value. The net result of building on these two ideas is a modified form of Bellman's dynamic programming, and, therefore, a new reinforcement learning algorithm, which not only outperforms traditional reinforcement learning algorithms, but also offers some highly desirable properties. Among them is a linear law of computational complexity, which is the best that it could be. The second part of the paper addresses two challenging problems: first, how to mediate between cognitive control and cognitive perception and, second, how to formulate a procedure for risk control. The first problem is resolved by making use of probabilistic reasoning, a branch of probability theory, which leads into the formulation of a probabilistic reasoning machine. With this mediation in place, the conditions for overall system stability are derived, thereby confirming the probabilistic reasoning machine as the overall system stabilizer. The second challenge is risk control, which is by far the most challenging of them all: In the presence of an unexpected disturbance in the environment, risk is brought under control by mimicking the predict and preadapt function, which is considered to be the overarching function in the prefrontal cortex of the brain. To be specific, motor control is expanded by the inclusion of a new preadaptive control mechanism, which involves two different sets of actions: One set is made up of possible actions identified by the policy in the motor control. The other set involves a window of experiences (i.e., optimal actions) gained in the past. In a novel way, by exploiting these two sets, we end up with a preadaptive control mechanism in the form of a closed-loop feedback structure, which brings with it control (executive) attention." @default.
- W2130167438 created "2016-06-24" @default.
- W2130167438 creator A5040530780 @default.
- W2130167438 creator A5062209758 @default.
- W2130167438 date "2014-04-01" @default.
- W2130167438 modified "2023-09-25" @default.
- W2130167438 title "On Cognitive Dynamic Systems: Cognitive Neuroscience and Engineering Learning From Each Other" @default.
- W2130167438 cites W1601081659 @default.
- W2130167438 cites W1974202472 @default.
- W2130167438 cites W1988764534 @default.
- W2130167438 cites W1995875735 @default.
- W2130167438 cites W2018405866 @default.
- W2130167438 cites W2021757605 @default.
- W2130167438 cites W2037050360 @default.
- W2130167438 cites W204301623 @default.
- W2130167438 cites W2063146632 @default.
- W2130167438 cites W2066533334 @default.
- W2130167438 cites W2067107847 @default.
- W2130167438 cites W2071707134 @default.
- W2130167438 cites W2096962395 @default.
- W2130167438 cites W2106517961 @default.
- W2130167438 cites W2112135274 @default.
- W2130167438 cites W2122541426 @default.
- W2130167438 cites W2131352719 @default.
- W2130167438 cites W2136859247 @default.
- W2130167438 cites W2145889472 @default.
- W2130167438 cites W2151137320 @default.
- W2130167438 cites W2151554678 @default.
- W2130167438 cites W2153791616 @default.
- W2130167438 cites W2155628709 @default.
- W2130167438 cites W2346578572 @default.
- W2130167438 cites W3036512766 @default.
- W2130167438 cites W4236397994 @default.
- W2130167438 cites W4237171445 @default.
- W2130167438 cites W4240843725 @default.
- W2130167438 cites W4246261737 @default.
- W2130167438 cites W4250923177 @default.
- W2130167438 cites W4299551239 @default.
- W2130167438 cites W4300402905 @default.
- W2130167438 cites W45722144 @default.
- W2130167438 doi "https://doi.org/10.1109/jproc.2014.2311211" @default.
- W2130167438 hasPublicationYear "2014" @default.
- W2130167438 type Work @default.
- W2130167438 sameAs 2130167438 @default.
- W2130167438 citedByCount "68" @default.
- W2130167438 countsByYear W21301674382014 @default.
- W2130167438 countsByYear W21301674382015 @default.
- W2130167438 countsByYear W21301674382016 @default.
- W2130167438 countsByYear W21301674382017 @default.
- W2130167438 countsByYear W21301674382018 @default.
- W2130167438 countsByYear W21301674382019 @default.
- W2130167438 countsByYear W21301674382020 @default.
- W2130167438 countsByYear W21301674382021 @default.
- W2130167438 countsByYear W21301674382022 @default.
- W2130167438 countsByYear W21301674382023 @default.
- W2130167438 crossrefType "journal-article" @default.
- W2130167438 hasAuthorship W2130167438A5040530780 @default.
- W2130167438 hasAuthorship W2130167438A5062209758 @default.
- W2130167438 hasConcept C107673813 @default.
- W2130167438 hasConcept C11413529 @default.
- W2130167438 hasConcept C119857082 @default.
- W2130167438 hasConcept C15286952 @default.
- W2130167438 hasConcept C154945302 @default.
- W2130167438 hasConcept C15744967 @default.
- W2130167438 hasConcept C160234255 @default.
- W2130167438 hasConcept C169760540 @default.
- W2130167438 hasConcept C169900460 @default.
- W2130167438 hasConcept C17289045 @default.
- W2130167438 hasConcept C188147891 @default.
- W2130167438 hasConcept C26760741 @default.
- W2130167438 hasConcept C37404715 @default.
- W2130167438 hasConcept C41008148 @default.
- W2130167438 hasConcept C77637269 @default.
- W2130167438 hasConcept C80444323 @default.
- W2130167438 hasConcept C97541855 @default.
- W2130167438 hasConceptScore W2130167438C107673813 @default.
- W2130167438 hasConceptScore W2130167438C11413529 @default.
- W2130167438 hasConceptScore W2130167438C119857082 @default.
- W2130167438 hasConceptScore W2130167438C15286952 @default.
- W2130167438 hasConceptScore W2130167438C154945302 @default.
- W2130167438 hasConceptScore W2130167438C15744967 @default.
- W2130167438 hasConceptScore W2130167438C160234255 @default.
- W2130167438 hasConceptScore W2130167438C169760540 @default.
- W2130167438 hasConceptScore W2130167438C169900460 @default.
- W2130167438 hasConceptScore W2130167438C17289045 @default.
- W2130167438 hasConceptScore W2130167438C188147891 @default.
- W2130167438 hasConceptScore W2130167438C26760741 @default.
- W2130167438 hasConceptScore W2130167438C37404715 @default.
- W2130167438 hasConceptScore W2130167438C41008148 @default.
- W2130167438 hasConceptScore W2130167438C77637269 @default.
- W2130167438 hasConceptScore W2130167438C80444323 @default.
- W2130167438 hasConceptScore W2130167438C97541855 @default.
- W2130167438 hasIssue "4" @default.
- W2130167438 hasLocation W21301674381 @default.
- W2130167438 hasOpenAccess W2130167438 @default.
- W2130167438 hasPrimaryLocation W21301674381 @default.
- W2130167438 hasRelatedWork W185759126 @default.
- W2130167438 hasRelatedWork W2149666140 @default.