Matches in SemOpenAlex for { <https://semopenalex.org/work/W2130189616> ?p ?o ?g. }
- W2130189616 endingPage "1276" @default.
- W2130189616 startingPage "1266" @default.
- W2130189616 abstract "In this paper we propose a methodology consisting of specific computational intelligence methods, i.e. principal component analysis and artificial neural networks, in order to inter-compare air quality and meteorological data, and to forecast the concentration levels for environmental parameters of interest (air pollutants). We demonstrate these methods to data monitored in the urban areas of Thessaloniki and Helsinki in Greece and Finland, respectively. For this purpose, we applied the principal component analysis method in order to inter-compare the patterns of air pollution in the two selected cities. Then, we proceeded with the development of air quality forecasting models for both studied areas. On this basis, we formulated and employed a novel hybrid scheme in the selection process of input variables for the forecasting models, involving a combination of linear regression and artificial neural networks (multi-layer perceptron) models. The latter ones were used for the forecasting of the daily mean concentrations of PM10 and PM2.5 for the next day. Results demonstrated an index of agreement between measured and modelled daily averaged PM10 concentrations, between 0.80 and 0.85, while the kappa index for the forecasting of the daily averaged PM10 concentrations reached 60% for both cities. Compared with previous corresponding studies, these statistical parameters indicate an improved performance of air quality parameters forecasting. It was also found that the performance of the models for the forecasting of the daily mean concentrations of PM10 was not substantially different for both cities, despite the major differences of the two urban environments under consideration." @default.
- W2130189616 created "2016-06-24" @default.
- W2130189616 creator A5008076826 @default.
- W2130189616 creator A5047431609 @default.
- W2130189616 creator A5050239473 @default.
- W2130189616 creator A5069060686 @default.
- W2130189616 creator A5080856387 @default.
- W2130189616 creator A5091816999 @default.
- W2130189616 date "2011-03-01" @default.
- W2130189616 modified "2023-10-18" @default.
- W2130189616 title "Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki" @default.
- W2130189616 cites W1584629197 @default.
- W2130189616 cites W1966148926 @default.
- W2130189616 cites W1966653299 @default.
- W2130189616 cites W1977060724 @default.
- W2130189616 cites W2002482862 @default.
- W2130189616 cites W2007609693 @default.
- W2130189616 cites W2009013300 @default.
- W2130189616 cites W2017071524 @default.
- W2130189616 cites W2017337590 @default.
- W2130189616 cites W2040292890 @default.
- W2130189616 cites W2048405625 @default.
- W2130189616 cites W2049408602 @default.
- W2130189616 cites W2053154970 @default.
- W2130189616 cites W2053854436 @default.
- W2130189616 cites W2054176576 @default.
- W2130189616 cites W2063741736 @default.
- W2130189616 cites W2069136368 @default.
- W2130189616 cites W2076413924 @default.
- W2130189616 cites W2078810200 @default.
- W2130189616 cites W2081170324 @default.
- W2130189616 cites W2088217228 @default.
- W2130189616 cites W2095143216 @default.
- W2130189616 cites W2114092586 @default.
- W2130189616 cites W21187131 @default.
- W2130189616 cites W2129757972 @default.
- W2130189616 cites W2130231837 @default.
- W2130189616 cites W2166388257 @default.
- W2130189616 cites W2169797785 @default.
- W2130189616 cites W2487149011 @default.
- W2130189616 cites W4246045209 @default.
- W2130189616 doi "https://doi.org/10.1016/j.scitotenv.2010.12.039" @default.
- W2130189616 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21276603" @default.
- W2130189616 hasPublicationYear "2011" @default.
- W2130189616 type Work @default.
- W2130189616 sameAs 2130189616 @default.
- W2130189616 citedByCount "198" @default.
- W2130189616 countsByYear W21301896162012 @default.
- W2130189616 countsByYear W21301896162013 @default.
- W2130189616 countsByYear W21301896162014 @default.
- W2130189616 countsByYear W21301896162015 @default.
- W2130189616 countsByYear W21301896162016 @default.
- W2130189616 countsByYear W21301896162017 @default.
- W2130189616 countsByYear W21301896162018 @default.
- W2130189616 countsByYear W21301896162019 @default.
- W2130189616 countsByYear W21301896162020 @default.
- W2130189616 countsByYear W21301896162021 @default.
- W2130189616 countsByYear W21301896162022 @default.
- W2130189616 countsByYear W21301896162023 @default.
- W2130189616 crossrefType "journal-article" @default.
- W2130189616 hasAuthorship W2130189616A5008076826 @default.
- W2130189616 hasAuthorship W2130189616A5047431609 @default.
- W2130189616 hasAuthorship W2130189616A5050239473 @default.
- W2130189616 hasAuthorship W2130189616A5069060686 @default.
- W2130189616 hasAuthorship W2130189616A5080856387 @default.
- W2130189616 hasAuthorship W2130189616A5091816999 @default.
- W2130189616 hasConcept C105795698 @default.
- W2130189616 hasConcept C119857082 @default.
- W2130189616 hasConcept C126314574 @default.
- W2130189616 hasConcept C153294291 @default.
- W2130189616 hasConcept C178790620 @default.
- W2130189616 hasConcept C179717631 @default.
- W2130189616 hasConcept C185592680 @default.
- W2130189616 hasConcept C205649164 @default.
- W2130189616 hasConcept C27438332 @default.
- W2130189616 hasConcept C33923547 @default.
- W2130189616 hasConcept C39432304 @default.
- W2130189616 hasConcept C41008148 @default.
- W2130189616 hasConcept C48921125 @default.
- W2130189616 hasConcept C50644808 @default.
- W2130189616 hasConcept C559116025 @default.
- W2130189616 hasConcept C60908668 @default.
- W2130189616 hasConceptScore W2130189616C105795698 @default.
- W2130189616 hasConceptScore W2130189616C119857082 @default.
- W2130189616 hasConceptScore W2130189616C126314574 @default.
- W2130189616 hasConceptScore W2130189616C153294291 @default.
- W2130189616 hasConceptScore W2130189616C178790620 @default.
- W2130189616 hasConceptScore W2130189616C179717631 @default.
- W2130189616 hasConceptScore W2130189616C185592680 @default.
- W2130189616 hasConceptScore W2130189616C205649164 @default.
- W2130189616 hasConceptScore W2130189616C27438332 @default.
- W2130189616 hasConceptScore W2130189616C33923547 @default.
- W2130189616 hasConceptScore W2130189616C39432304 @default.
- W2130189616 hasConceptScore W2130189616C41008148 @default.
- W2130189616 hasConceptScore W2130189616C48921125 @default.
- W2130189616 hasConceptScore W2130189616C50644808 @default.
- W2130189616 hasConceptScore W2130189616C559116025 @default.
- W2130189616 hasConceptScore W2130189616C60908668 @default.