Matches in SemOpenAlex for { <https://semopenalex.org/work/W2130227330> ?p ?o ?g. }
- W2130227330 endingPage "1151" @default.
- W2130227330 startingPage "1134" @default.
- W2130227330 abstract "The hidden Markov chain (HMC) model is a couple of random sequences (X,Y), in which X is an unobservable Markov chain, and Y is its observable noisy version. Classically, the distribution p(y|x) is simple enough to ensure the Markovianity of p(x|y), that enables one to use different Bayesian restoration techniques. HMC model has recently been extended to “pairwise Markov chain” (PMC) model, in which one directly assumes the Markovianity of the pair Z=(X,Y), and which still enables one to recover X from Y. Finally, PMC has been extended to “triplet Markov chain” (TMC) model, which is obtained by adding a third chain U and considering the Markovianity of the triplet T=(X,U,Y). When U is not too complex, X can still be recovered from Y. Then U can model different situations, like non-stationarity or semi-Markovianity of (X,Y). Otherwise, PMC and TMC have been extended to pairwise “partially” Markov chains (PPMC) and triplet “partially” Markov chains (TPMC), respectively. In a PPMC Z=(X,Y) the distribution p(x|y) is a Markov distribution, but p(y|x) may not be and, similarly, in a TPMC T=(X, U, Y) the distribution p(x,u|y) is a Markov distribution, but p(y|x,u) may not be. However, both PPMC and TPMC can enable one to recover X from Y, and TPMC include different long-memory noises. The aim of this paper is to show how a particular Gaussian TPMC can be used to segment a discrete signal hidden with long-memory noise. An original parameter estimation method, based on “Iterative Conditional Estimation” (ICE) principle, is proposed and some experiments concerned with unsupervised segmentation are provided. The particular unsupervised segmentation method used in experiments can also be seen as identification of different stationarities in fractional Brownian noise, which is widely used in different problems in telecommunications, economics, finance, or hydrology." @default.
- W2130227330 created "2016-06-24" @default.
- W2130227330 creator A5003588321 @default.
- W2130227330 creator A5062348685 @default.
- W2130227330 creator A5065700327 @default.
- W2130227330 date "2008-05-01" @default.
- W2130227330 modified "2023-09-30" @default.
- W2130227330 title "Unsupervised segmentation of triplet Markov chains hidden with long-memory noise" @default.
- W2130227330 cites W1975576642 @default.
- W2130227330 cites W1990776199 @default.
- W2130227330 cites W2006949910 @default.
- W2130227330 cites W2016013402 @default.
- W2130227330 cites W2019011597 @default.
- W2130227330 cites W2086360377 @default.
- W2130227330 cites W2087284982 @default.
- W2130227330 cites W2090536490 @default.
- W2130227330 cites W2096043893 @default.
- W2130227330 cites W2098630121 @default.
- W2130227330 cites W2106506108 @default.
- W2130227330 cites W2109685219 @default.
- W2130227330 cites W2116282268 @default.
- W2130227330 cites W2116742812 @default.
- W2130227330 cites W2120006201 @default.
- W2130227330 cites W2125339602 @default.
- W2130227330 cites W2127151297 @default.
- W2130227330 cites W2136799844 @default.
- W2130227330 cites W2142709479 @default.
- W2130227330 cites W2143033216 @default.
- W2130227330 cites W2143928519 @default.
- W2130227330 cites W2152324136 @default.
- W2130227330 cites W2157236682 @default.
- W2130227330 cites W2161855224 @default.
- W2130227330 cites W2163781727 @default.
- W2130227330 cites W2166576599 @default.
- W2130227330 cites W2169271279 @default.
- W2130227330 cites W2170622722 @default.
- W2130227330 cites W2176665413 @default.
- W2130227330 cites W2244065661 @default.
- W2130227330 cites W3125483823 @default.
- W2130227330 doi "https://doi.org/10.1016/j.sigpro.2007.10.015" @default.
- W2130227330 hasPublicationYear "2008" @default.
- W2130227330 type Work @default.
- W2130227330 sameAs 2130227330 @default.
- W2130227330 citedByCount "33" @default.
- W2130227330 countsByYear W21302273302012 @default.
- W2130227330 countsByYear W21302273302013 @default.
- W2130227330 countsByYear W21302273302014 @default.
- W2130227330 countsByYear W21302273302015 @default.
- W2130227330 countsByYear W21302273302016 @default.
- W2130227330 countsByYear W21302273302018 @default.
- W2130227330 countsByYear W21302273302019 @default.
- W2130227330 countsByYear W21302273302020 @default.
- W2130227330 countsByYear W21302273302021 @default.
- W2130227330 countsByYear W21302273302023 @default.
- W2130227330 crossrefType "journal-article" @default.
- W2130227330 hasAuthorship W2130227330A5003588321 @default.
- W2130227330 hasAuthorship W2130227330A5062348685 @default.
- W2130227330 hasAuthorship W2130227330A5065700327 @default.
- W2130227330 hasConcept C105795698 @default.
- W2130227330 hasConcept C110121322 @default.
- W2130227330 hasConcept C11413529 @default.
- W2130227330 hasConcept C114614502 @default.
- W2130227330 hasConcept C118615104 @default.
- W2130227330 hasConcept C121332964 @default.
- W2130227330 hasConcept C121864883 @default.
- W2130227330 hasConcept C134306372 @default.
- W2130227330 hasConcept C149782125 @default.
- W2130227330 hasConcept C163716315 @default.
- W2130227330 hasConcept C163836022 @default.
- W2130227330 hasConcept C184898388 @default.
- W2130227330 hasConcept C189973286 @default.
- W2130227330 hasConcept C2780695315 @default.
- W2130227330 hasConcept C33923547 @default.
- W2130227330 hasConcept C54907487 @default.
- W2130227330 hasConcept C62520636 @default.
- W2130227330 hasConcept C64939953 @default.
- W2130227330 hasConcept C96810086 @default.
- W2130227330 hasConcept C98763669 @default.
- W2130227330 hasConceptScore W2130227330C105795698 @default.
- W2130227330 hasConceptScore W2130227330C110121322 @default.
- W2130227330 hasConceptScore W2130227330C11413529 @default.
- W2130227330 hasConceptScore W2130227330C114614502 @default.
- W2130227330 hasConceptScore W2130227330C118615104 @default.
- W2130227330 hasConceptScore W2130227330C121332964 @default.
- W2130227330 hasConceptScore W2130227330C121864883 @default.
- W2130227330 hasConceptScore W2130227330C134306372 @default.
- W2130227330 hasConceptScore W2130227330C149782125 @default.
- W2130227330 hasConceptScore W2130227330C163716315 @default.
- W2130227330 hasConceptScore W2130227330C163836022 @default.
- W2130227330 hasConceptScore W2130227330C184898388 @default.
- W2130227330 hasConceptScore W2130227330C189973286 @default.
- W2130227330 hasConceptScore W2130227330C2780695315 @default.
- W2130227330 hasConceptScore W2130227330C33923547 @default.
- W2130227330 hasConceptScore W2130227330C54907487 @default.
- W2130227330 hasConceptScore W2130227330C62520636 @default.
- W2130227330 hasConceptScore W2130227330C64939953 @default.
- W2130227330 hasConceptScore W2130227330C96810086 @default.
- W2130227330 hasConceptScore W2130227330C98763669 @default.