Matches in SemOpenAlex for { <https://semopenalex.org/work/W2130251175> ?p ?o ?g. }
- W2130251175 endingPage "1569" @default.
- W2130251175 startingPage "1540" @default.
- W2130251175 abstract "Automated planning requires action models described using languages such as the Planning Domain Definition Language (PDDL) as input, but building action models from scratch is a very difficult and time-consuming task, even for experts. This is because it is difficult to formally describe all conditions and changes, reflected in the preconditions and effects of action models. In the past, there have been algorithms that can automatically learn simple action models from plan traces. However, there are many cases in the real world where we need more complicated expressions based on universal and existential quantifiers, as well as logical implications in action models to precisely describe the underlying mechanisms of the actions. Such complex action models cannot be learned using many previous algorithms. In this article, we present a novel algorithm called LAMP (Learning Action Models from Plan traces), to learn action models with quantifiers and logical implications from a set of observed plan traces with only partially observed intermediate state information. The LAMP algorithm generates candidate formulas that are passed to a Markov Logic Network (MLN) for selecting the most likely subsets of candidate formulas. The selected subset of formulas is then transformed into learned action models, which can then be tweaked by domain experts to arrive at the final models. We evaluate our approach in four planning domains to demonstrate that LAMP is effective in learning complex action models. We also analyze the human effort saved by using LAMP in helping to create action models through a user study. Finally, we apply LAMP to a real-world application domain for software requirement engineering to help the engineers acquire software requirements and show that LAMP can indeed help experts a great deal in real-world knowledge-engineering applications." @default.
- W2130251175 created "2016-06-24" @default.
- W2130251175 creator A5017811036 @default.
- W2130251175 creator A5018132761 @default.
- W2130251175 creator A5033477421 @default.
- W2130251175 creator A5041945159 @default.
- W2130251175 date "2010-12-01" @default.
- W2130251175 modified "2023-10-14" @default.
- W2130251175 title "Learning complex action models with quantifiers and logical implications" @default.
- W2130251175 cites W107637390 @default.
- W2130251175 cites W1494688554 @default.
- W2130251175 cites W1535439311 @default.
- W2130251175 cites W1552549180 @default.
- W2130251175 cites W1581661059 @default.
- W2130251175 cites W1599280730 @default.
- W2130251175 cites W16599163 @default.
- W2130251175 cites W1741372064 @default.
- W2130251175 cites W1846056457 @default.
- W2130251175 cites W1890589545 @default.
- W2130251175 cites W1974016322 @default.
- W2130251175 cites W1975330620 @default.
- W2130251175 cites W1977970897 @default.
- W2130251175 cites W1987902506 @default.
- W2130251175 cites W2024113144 @default.
- W2130251175 cites W2051434435 @default.
- W2130251175 cites W2092104391 @default.
- W2130251175 cites W2103538877 @default.
- W2130251175 cites W2119709400 @default.
- W2130251175 cites W2121075864 @default.
- W2130251175 cites W2122048287 @default.
- W2130251175 cites W2125456529 @default.
- W2130251175 cites W2133999127 @default.
- W2130251175 cites W2144429462 @default.
- W2130251175 cites W2149390907 @default.
- W2130251175 cites W2169992051 @default.
- W2130251175 cites W2171472464 @default.
- W2130251175 cites W2337392266 @default.
- W2130251175 cites W28766783 @default.
- W2130251175 doi "https://doi.org/10.1016/j.artint.2010.09.007" @default.
- W2130251175 hasPublicationYear "2010" @default.
- W2130251175 type Work @default.
- W2130251175 sameAs 2130251175 @default.
- W2130251175 citedByCount "73" @default.
- W2130251175 countsByYear W21302511752012 @default.
- W2130251175 countsByYear W21302511752013 @default.
- W2130251175 countsByYear W21302511752014 @default.
- W2130251175 countsByYear W21302511752015 @default.
- W2130251175 countsByYear W21302511752016 @default.
- W2130251175 countsByYear W21302511752017 @default.
- W2130251175 countsByYear W21302511752018 @default.
- W2130251175 countsByYear W21302511752019 @default.
- W2130251175 countsByYear W21302511752020 @default.
- W2130251175 countsByYear W21302511752021 @default.
- W2130251175 countsByYear W21302511752022 @default.
- W2130251175 countsByYear W21302511752023 @default.
- W2130251175 crossrefType "journal-article" @default.
- W2130251175 hasAuthorship W2130251175A5017811036 @default.
- W2130251175 hasAuthorship W2130251175A5018132761 @default.
- W2130251175 hasAuthorship W2130251175A5033477421 @default.
- W2130251175 hasAuthorship W2130251175A5041945159 @default.
- W2130251175 hasConcept C111472728 @default.
- W2130251175 hasConcept C114073186 @default.
- W2130251175 hasConcept C119857082 @default.
- W2130251175 hasConcept C121332964 @default.
- W2130251175 hasConcept C138885662 @default.
- W2130251175 hasConcept C154945302 @default.
- W2130251175 hasConcept C162324750 @default.
- W2130251175 hasConcept C166957645 @default.
- W2130251175 hasConcept C177264268 @default.
- W2130251175 hasConcept C187736073 @default.
- W2130251175 hasConcept C199360897 @default.
- W2130251175 hasConcept C2776505523 @default.
- W2130251175 hasConcept C2780451532 @default.
- W2130251175 hasConcept C2780586882 @default.
- W2130251175 hasConcept C2780791683 @default.
- W2130251175 hasConcept C41008148 @default.
- W2130251175 hasConcept C62520636 @default.
- W2130251175 hasConcept C80444323 @default.
- W2130251175 hasConcept C95457728 @default.
- W2130251175 hasConceptScore W2130251175C111472728 @default.
- W2130251175 hasConceptScore W2130251175C114073186 @default.
- W2130251175 hasConceptScore W2130251175C119857082 @default.
- W2130251175 hasConceptScore W2130251175C121332964 @default.
- W2130251175 hasConceptScore W2130251175C138885662 @default.
- W2130251175 hasConceptScore W2130251175C154945302 @default.
- W2130251175 hasConceptScore W2130251175C162324750 @default.
- W2130251175 hasConceptScore W2130251175C166957645 @default.
- W2130251175 hasConceptScore W2130251175C177264268 @default.
- W2130251175 hasConceptScore W2130251175C187736073 @default.
- W2130251175 hasConceptScore W2130251175C199360897 @default.
- W2130251175 hasConceptScore W2130251175C2776505523 @default.
- W2130251175 hasConceptScore W2130251175C2780451532 @default.
- W2130251175 hasConceptScore W2130251175C2780586882 @default.
- W2130251175 hasConceptScore W2130251175C2780791683 @default.
- W2130251175 hasConceptScore W2130251175C41008148 @default.
- W2130251175 hasConceptScore W2130251175C62520636 @default.
- W2130251175 hasConceptScore W2130251175C80444323 @default.
- W2130251175 hasConceptScore W2130251175C95457728 @default.