Matches in SemOpenAlex for { <https://semopenalex.org/work/W2130351615> ?p ?o ?g. }
- W2130351615 endingPage "4256" @default.
- W2130351615 startingPage "4241" @default.
- W2130351615 abstract "We recently reported that the presence of chloride counter ions in freeze-dried l-arginine/sucrose formulations provided the greatest protein stability, but led to low collapse temperatures and glass transition temperatures of the freeze concentrates. The objectives of this study were to identify l-arginine chloride-based formulations and optimize freeze-drying process conditions to deliver a freeze-dried product with good physical quality attributes (including cake appearance, residual moisture, and reconstitution time). Additional properties were tested such as thermal properties, cake microstructure, and protein physical stability. Excipient concentrations were varied with and without a model protein (bovine serum albumin, BSA). Formulations were frozen with and without annealing or with and without controlled nucleation. Primary drying was conducted at high and low shelf temperature. Cakes with least defects and optimum physical attributes were achieved when protein to excipient ratios were high. Controlled nucleation led to elegant cakes for most systems at a low shelf temperature. Replacing BSA by a monoclonal antibody showed that protein (physical) stability was slightly improved under stress storage temperature (i.e., 40°C) in the presence of a low concentration of l-arginine in a sucrose-based formulation. At higher l-arginine concentrations, cake defects increased. Using optimized formulation design, addition of l-arginine chloride to a sucrose-based formulation provided elegant cakes and benefits for protein stability. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association. We recently reported that the presence of chloride counter ions in freeze-dried l-arginine/sucrose formulations provided the greatest protein stability, but led to low collapse temperatures and glass transition temperatures of the freeze concentrates. The objectives of this study were to identify l-arginine chloride-based formulations and optimize freeze-drying process conditions to deliver a freeze-dried product with good physical quality attributes (including cake appearance, residual moisture, and reconstitution time). Additional properties were tested such as thermal properties, cake microstructure, and protein physical stability. Excipient concentrations were varied with and without a model protein (bovine serum albumin, BSA). Formulations were frozen with and without annealing or with and without controlled nucleation. Primary drying was conducted at high and low shelf temperature. Cakes with least defects and optimum physical attributes were achieved when protein to excipient ratios were high. Controlled nucleation led to elegant cakes for most systems at a low shelf temperature. Replacing BSA by a monoclonal antibody showed that protein (physical) stability was slightly improved under stress storage temperature (i.e., 40°C) in the presence of a low concentration of l-arginine in a sucrose-based formulation. At higher l-arginine concentrations, cake defects increased. Using optimized formulation design, addition of l-arginine chloride to a sucrose-based formulation provided elegant cakes and benefits for protein stability. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association." @default.
- W2130351615 created "2016-06-24" @default.
- W2130351615 creator A5048246167 @default.
- W2130351615 creator A5049176376 @default.
- W2130351615 creator A5052151636 @default.
- W2130351615 creator A5056355809 @default.
- W2130351615 creator A5061878215 @default.
- W2130351615 creator A5072764736 @default.
- W2130351615 creator A5073559449 @default.
- W2130351615 date "2015-12-01" @default.
- W2130351615 modified "2023-09-24" @default.
- W2130351615 title "Freeze-Drying of l -Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an l -Arginine Chloride-Based Protein Formulation System" @default.
- W2130351615 cites W1276324155 @default.
- W2130351615 cites W1539001309 @default.
- W2130351615 cites W1950022475 @default.
- W2130351615 cites W1966574892 @default.
- W2130351615 cites W1971318238 @default.
- W2130351615 cites W1972596775 @default.
- W2130351615 cites W1977805806 @default.
- W2130351615 cites W1977996370 @default.
- W2130351615 cites W1981784850 @default.
- W2130351615 cites W1985941856 @default.
- W2130351615 cites W1987205432 @default.
- W2130351615 cites W1997131813 @default.
- W2130351615 cites W2001738413 @default.
- W2130351615 cites W2006059230 @default.
- W2130351615 cites W2008681354 @default.
- W2130351615 cites W2009136136 @default.
- W2130351615 cites W2016881011 @default.
- W2130351615 cites W2017027704 @default.
- W2130351615 cites W2019210215 @default.
- W2130351615 cites W2019456940 @default.
- W2130351615 cites W2020155524 @default.
- W2130351615 cites W2022341494 @default.
- W2130351615 cites W2025413118 @default.
- W2130351615 cites W2025712853 @default.
- W2130351615 cites W2030046965 @default.
- W2130351615 cites W2045616230 @default.
- W2130351615 cites W2048199422 @default.
- W2130351615 cites W2051036865 @default.
- W2130351615 cites W2052939968 @default.
- W2130351615 cites W2054956418 @default.
- W2130351615 cites W2055127900 @default.
- W2130351615 cites W2056021978 @default.
- W2130351615 cites W2059564760 @default.
- W2130351615 cites W2060650957 @default.
- W2130351615 cites W2066883145 @default.
- W2130351615 cites W2067392529 @default.
- W2130351615 cites W2067717338 @default.
- W2130351615 cites W2067957528 @default.
- W2130351615 cites W2073788303 @default.
- W2130351615 cites W2074061140 @default.
- W2130351615 cites W2079662948 @default.
- W2130351615 cites W2079917984 @default.
- W2130351615 cites W2080370993 @default.
- W2130351615 cites W2081212616 @default.
- W2130351615 cites W2081485853 @default.
- W2130351615 cites W2083815812 @default.
- W2130351615 cites W2085894063 @default.
- W2130351615 cites W2091735906 @default.
- W2130351615 cites W2093597250 @default.
- W2130351615 cites W2095261164 @default.
- W2130351615 cites W2107882642 @default.
- W2130351615 cites W2119269930 @default.
- W2130351615 cites W2159640426 @default.
- W2130351615 cites W2170219178 @default.
- W2130351615 cites W2170373214 @default.
- W2130351615 cites W2171299955 @default.
- W2130351615 cites W224574185 @default.
- W2130351615 cites W279913475 @default.
- W2130351615 cites W4238520503 @default.
- W2130351615 cites W66053814 @default.
- W2130351615 doi "https://doi.org/10.1002/jps.24658" @default.
- W2130351615 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26422647" @default.
- W2130351615 hasPublicationYear "2015" @default.
- W2130351615 type Work @default.
- W2130351615 sameAs 2130351615 @default.
- W2130351615 citedByCount "24" @default.
- W2130351615 countsByYear W21303516152016 @default.
- W2130351615 countsByYear W21303516152017 @default.
- W2130351615 countsByYear W21303516152018 @default.
- W2130351615 countsByYear W21303516152019 @default.
- W2130351615 countsByYear W21303516152020 @default.
- W2130351615 countsByYear W21303516152021 @default.
- W2130351615 countsByYear W21303516152022 @default.
- W2130351615 countsByYear W21303516152023 @default.
- W2130351615 crossrefType "journal-article" @default.
- W2130351615 hasAuthorship W2130351615A5048246167 @default.
- W2130351615 hasAuthorship W2130351615A5049176376 @default.
- W2130351615 hasAuthorship W2130351615A5052151636 @default.
- W2130351615 hasAuthorship W2130351615A5056355809 @default.
- W2130351615 hasAuthorship W2130351615A5061878215 @default.
- W2130351615 hasAuthorship W2130351615A5072764736 @default.
- W2130351615 hasAuthorship W2130351615A5073559449 @default.
- W2130351615 hasConcept C127413603 @default.
- W2130351615 hasConcept C178790620 @default.
- W2130351615 hasConcept C185592680 @default.
- W2130351615 hasConcept C2777239854 @default.