Matches in SemOpenAlex for { <https://semopenalex.org/work/W2130374895> ?p ?o ?g. }
- W2130374895 endingPage "8351" @default.
- W2130374895 startingPage "8329" @default.
- W2130374895 abstract "Abstract. We demonstrate that substrate uptake kinetics in any consumer–substrate network subject to the total quasi-steady-state assumption can be formulated as an equilibrium chemistry (EC) problem. If the consumer-substrate complexes equilibrate much faster than other metabolic processes, then the relationships between consumers, substrates, and consumer-substrate complexes are in quasi-equilibrium and the change of a given total substrate (free plus consumer-bounded) is determined by the degradation of all its consumer-substrate complexes. In this EC formulation, the corresponding equilibrium reaction constants are the conventional Michaelis–Menten (MM) substrate affinity constants. When all of the elements in a given network are either consumer or substrate (but not both), we derived a first-order accurate EC approximation (ECA). The ECA kinetics is compatible with almost every existing extension of MM kinetics. In particular, for microbial organic matter decomposition modeling, ECA kinetics explicitly predicts a specific microbe's uptake for a specific substrate as a function of the microbe's affinity for the substrate, other microbes' affinity for the substrate, and the shielding effect on substrate uptake by environmental factors, such as mineral surface adsorption. By taking the EC solution as a reference, we evaluated MM and ECA kinetics for their abilities to represent several differently configured enzyme-substrate reaction networks. In applying the ECA and MM kinetics to microbial models of different complexities, we found (i) both the ECA and MM kinetics accurately reproduced the EC solution when multiple microbes are competing for a single substrate; (ii) ECA outperformed MM kinetics in reproducing the EC solution when a single microbe is feeding on multiple substrates; (iii) the MM kinetics failed, while the ECA kinetics succeeded, in reproducing the EC solution when multiple consumers (i.e., microbes and mineral surfaces) were competing for multiple substrates. We then applied the EC and ECA kinetics to a guild based C-only microbial litter decomposition model and found that both approaches successfully simulated the commonly observed (i) two-phase temporal evolution of the decomposition dynamics; (ii) final asymptotic convergence of the lignocellulose index to a constant that depends on initial litter chemistry and microbial community structure; and (iii) microbial biomass proportion of total organic biomass (litter plus microbes). In contrast, the MM kinetics failed to realistically predict these metrics. We therefore conclude that the ECA kinetics are more robust than the MM kinetics in representing complex microbial, C substrate, and mineral surface interactions. Finally, we discuss how these concepts can be applied to other consumer–substrate networks." @default.
- W2130374895 created "2016-06-24" @default.
- W2130374895 creator A5023761079 @default.
- W2130374895 creator A5053256498 @default.
- W2130374895 date "2013-12-16" @default.
- W2130374895 modified "2023-10-18" @default.
- W2130374895 title "A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition" @default.
- W2130374895 cites W1499247386 @default.
- W2130374895 cites W1589984731 @default.
- W2130374895 cites W1593294737 @default.
- W2130374895 cites W1594945568 @default.
- W2130374895 cites W1803620352 @default.
- W2130374895 cites W1899964430 @default.
- W2130374895 cites W1968302182 @default.
- W2130374895 cites W1969472777 @default.
- W2130374895 cites W1970895123 @default.
- W2130374895 cites W1973975293 @default.
- W2130374895 cites W1974256950 @default.
- W2130374895 cites W1974993010 @default.
- W2130374895 cites W1975046851 @default.
- W2130374895 cites W1975118281 @default.
- W2130374895 cites W1976817668 @default.
- W2130374895 cites W1980547049 @default.
- W2130374895 cites W1985479415 @default.
- W2130374895 cites W1987205608 @default.
- W2130374895 cites W1988735020 @default.
- W2130374895 cites W1989197520 @default.
- W2130374895 cites W1993759585 @default.
- W2130374895 cites W1994500037 @default.
- W2130374895 cites W2000619385 @default.
- W2130374895 cites W2002164453 @default.
- W2130374895 cites W2004728046 @default.
- W2130374895 cites W2006443304 @default.
- W2130374895 cites W2009766566 @default.
- W2130374895 cites W2013242069 @default.
- W2130374895 cites W2018672425 @default.
- W2130374895 cites W2020491131 @default.
- W2130374895 cites W2024184910 @default.
- W2130374895 cites W2028960858 @default.
- W2130374895 cites W2029957623 @default.
- W2130374895 cites W2034018169 @default.
- W2130374895 cites W2035346239 @default.
- W2130374895 cites W2035822642 @default.
- W2130374895 cites W2036050554 @default.
- W2130374895 cites W2037136087 @default.
- W2130374895 cites W2037726424 @default.
- W2130374895 cites W2039074462 @default.
- W2130374895 cites W2041603328 @default.
- W2130374895 cites W2042392308 @default.
- W2130374895 cites W2046844660 @default.
- W2130374895 cites W2052528640 @default.
- W2130374895 cites W2057980421 @default.
- W2130374895 cites W2061493800 @default.
- W2130374895 cites W2065688148 @default.
- W2130374895 cites W2066480138 @default.
- W2130374895 cites W2067436018 @default.
- W2130374895 cites W2069768413 @default.
- W2130374895 cites W2070659036 @default.
- W2130374895 cites W2070987274 @default.
- W2130374895 cites W2074444609 @default.
- W2130374895 cites W2081346522 @default.
- W2130374895 cites W2083857556 @default.
- W2130374895 cites W2084621533 @default.
- W2130374895 cites W2085775291 @default.
- W2130374895 cites W2085800969 @default.
- W2130374895 cites W2088471629 @default.
- W2130374895 cites W2090312078 @default.
- W2130374895 cites W2093542260 @default.
- W2130374895 cites W2093713534 @default.
- W2130374895 cites W2094775999 @default.
- W2130374895 cites W2095889937 @default.
- W2130374895 cites W2097406754 @default.
- W2130374895 cites W2098310207 @default.
- W2130374895 cites W2099858489 @default.
- W2130374895 cites W2102425044 @default.
- W2130374895 cites W2107012083 @default.
- W2130374895 cites W2108636006 @default.
- W2130374895 cites W2108859292 @default.
- W2130374895 cites W2110325111 @default.
- W2130374895 cites W2111966523 @default.
- W2130374895 cites W2117160001 @default.
- W2130374895 cites W2119539613 @default.
- W2130374895 cites W2120042888 @default.
- W2130374895 cites W2123615179 @default.
- W2130374895 cites W2130078879 @default.
- W2130374895 cites W2134732467 @default.
- W2130374895 cites W2138554859 @default.
- W2130374895 cites W2142996073 @default.
- W2130374895 cites W2146495904 @default.
- W2130374895 cites W2148378599 @default.
- W2130374895 cites W2149497576 @default.
- W2130374895 cites W2151938782 @default.
- W2130374895 cites W2153010643 @default.
- W2130374895 cites W2155329458 @default.
- W2130374895 cites W2159414529 @default.
- W2130374895 cites W2161004119 @default.
- W2130374895 cites W2164687335 @default.
- W2130374895 cites W2167042697 @default.