Matches in SemOpenAlex for { <https://semopenalex.org/work/W2130484403> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2130484403 endingPage "285" @default.
- W2130484403 startingPage "270" @default.
- W2130484403 abstract "ABSTRACT Artificial neural network (ANN) models for water loss (WL) and solid gain (SG) were evaluated as potential alternative to multiple linear regression (MLR) for osmotic dehydration of apple, banana and potato. The radial basis function (RBF) network with a Gaussian function was used in this study. The RBF employed the orthogonal least square learning method. When predictions of experimental data from MLR and ANN were compared, an agreement was found for ANN models than MLR models for SG than WL. The regression coefficient for determination (R2) for SG in MLR models was 0.31, and for ANN was 0.91. The R2 in MLR for WL was 0.89, whereas ANN was 0.84. Osmotic dehydration experiments found that the amount of WL and SG occurred in the following descending order: Golden Delicious apple > Cox apple > potato > banana. The effect of temperature and concentration of osmotic solution on WL and SG of the plant materials followed a descending order as: 55 > 40 > 32.2C and 70 > 60 > 50 > 40%, respectively. PRACTICAL APPLICATIONS Artificial neural networks (ANN) models are suitable alternatives for modeling osmotic dehydration of plant materials. It has previously been used as a modeling tool in several foods processing applications and had demonstrated to perform better than conventional tools which were based on regression, statistical or parametric models. This research is applicable for ANN modeling in estimation of the mass transfer in osmotic dehydration of any plant material. Further, it can be applied in estimation of the mass transfer for any other pre-treatment process for plant materials. The radial basis function (RBF) network with a Gaussian function is an efficient application to employ for variable operating conditions for all pre-treatment process on any other plant material." @default.
- W2130484403 created "2016-06-24" @default.
- W2130484403 creator A5036038133 @default.
- W2130484403 creator A5048207917 @default.
- W2130484403 creator A5057602346 @default.
- W2130484403 creator A5062981262 @default.
- W2130484403 date "2008-04-01" @default.
- W2130484403 modified "2023-10-18" @default.
- W2130484403 title "ARTIFICIAL NEURAL NETWORKS IN MODELING OSMOTIC DEHYDRATION OF FOODS" @default.
- W2130484403 cites W1851781208 @default.
- W2130484403 cites W1965229818 @default.
- W2130484403 cites W1971017074 @default.
- W2130484403 cites W1984055435 @default.
- W2130484403 cites W1986460111 @default.
- W2130484403 cites W1990719878 @default.
- W2130484403 cites W2064115162 @default.
- W2130484403 cites W2084618530 @default.
- W2130484403 cites W2092887836 @default.
- W2130484403 cites W2099535269 @default.
- W2130484403 cites W2102426550 @default.
- W2130484403 cites W2105129723 @default.
- W2130484403 cites W2122529678 @default.
- W2130484403 cites W2155399784 @default.
- W2130484403 doi "https://doi.org/10.1111/j.1745-4549.2008.00178.x" @default.
- W2130484403 hasPublicationYear "2008" @default.
- W2130484403 type Work @default.
- W2130484403 sameAs 2130484403 @default.
- W2130484403 citedByCount "6" @default.
- W2130484403 countsByYear W21304844032013 @default.
- W2130484403 countsByYear W21304844032015 @default.
- W2130484403 countsByYear W21304844032020 @default.
- W2130484403 countsByYear W21304844032022 @default.
- W2130484403 crossrefType "journal-article" @default.
- W2130484403 hasAuthorship W2130484403A5036038133 @default.
- W2130484403 hasAuthorship W2130484403A5048207917 @default.
- W2130484403 hasAuthorship W2130484403A5057602346 @default.
- W2130484403 hasAuthorship W2130484403A5062981262 @default.
- W2130484403 hasBestOaLocation W21304844031 @default.
- W2130484403 hasConcept C105795698 @default.
- W2130484403 hasConcept C128990827 @default.
- W2130484403 hasConcept C152877465 @default.
- W2130484403 hasConcept C154945302 @default.
- W2130484403 hasConcept C185592680 @default.
- W2130484403 hasConcept C186060115 @default.
- W2130484403 hasConcept C2777977896 @default.
- W2130484403 hasConcept C2778769901 @default.
- W2130484403 hasConcept C33923547 @default.
- W2130484403 hasConcept C41008148 @default.
- W2130484403 hasConcept C43617362 @default.
- W2130484403 hasConcept C48921125 @default.
- W2130484403 hasConcept C50644808 @default.
- W2130484403 hasConcept C51038369 @default.
- W2130484403 hasConcept C55493867 @default.
- W2130484403 hasConcept C86803240 @default.
- W2130484403 hasConcept C98856871 @default.
- W2130484403 hasConceptScore W2130484403C105795698 @default.
- W2130484403 hasConceptScore W2130484403C128990827 @default.
- W2130484403 hasConceptScore W2130484403C152877465 @default.
- W2130484403 hasConceptScore W2130484403C154945302 @default.
- W2130484403 hasConceptScore W2130484403C185592680 @default.
- W2130484403 hasConceptScore W2130484403C186060115 @default.
- W2130484403 hasConceptScore W2130484403C2777977896 @default.
- W2130484403 hasConceptScore W2130484403C2778769901 @default.
- W2130484403 hasConceptScore W2130484403C33923547 @default.
- W2130484403 hasConceptScore W2130484403C41008148 @default.
- W2130484403 hasConceptScore W2130484403C43617362 @default.
- W2130484403 hasConceptScore W2130484403C48921125 @default.
- W2130484403 hasConceptScore W2130484403C50644808 @default.
- W2130484403 hasConceptScore W2130484403C51038369 @default.
- W2130484403 hasConceptScore W2130484403C55493867 @default.
- W2130484403 hasConceptScore W2130484403C86803240 @default.
- W2130484403 hasConceptScore W2130484403C98856871 @default.
- W2130484403 hasIssue "2" @default.
- W2130484403 hasLocation W21304844031 @default.
- W2130484403 hasOpenAccess W2130484403 @default.
- W2130484403 hasPrimaryLocation W21304844031 @default.
- W2130484403 hasRelatedWork W2075210509 @default.
- W2130484403 hasRelatedWork W2358662233 @default.
- W2130484403 hasRelatedWork W2375721435 @default.
- W2130484403 hasRelatedWork W247449116 @default.
- W2130484403 hasRelatedWork W2624501724 @default.
- W2130484403 hasRelatedWork W2966251753 @default.
- W2130484403 hasRelatedWork W2979774498 @default.
- W2130484403 hasRelatedWork W4291492812 @default.
- W2130484403 hasRelatedWork W4312463433 @default.
- W2130484403 hasRelatedWork W4377230321 @default.
- W2130484403 hasVolume "32" @default.
- W2130484403 isParatext "false" @default.
- W2130484403 isRetracted "false" @default.
- W2130484403 magId "2130484403" @default.
- W2130484403 workType "article" @default.