Matches in SemOpenAlex for { <https://semopenalex.org/work/W2130622410> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2130622410 endingPage "233" @default.
- W2130622410 startingPage "224" @default.
- W2130622410 abstract "Though serving as an effective means for damage identification, the capability of an artificial neural network (ANN) for quantitative prediction is substantially dependent on the amount of training data. In virtue of a concept of “Digital Damage Fingerprints” (DDF), a hierarchical approach for the development of training databases was proposed for ANN-based damage identification. With the object of exploiting the capability of ANN to address the key questions: “Is there damage?” and “Where is the damage?”, the amount of training data (damage cases) was increased progressively. Mutuality was established between the quantity of training data and the accuracy of answers to the two questions of interest, and was experimentally validated by identifying the position of actual damage in carbon fibre-reinforced composite laminates. The results demonstrate that such a hierarchical approach is capable of offering prediction as to the presence and location of damage individually, with substantially reduced computational cost and effort in the development of the ANN training database." @default.
- W2130622410 created "2016-06-24" @default.
- W2130622410 creator A5019835581 @default.
- W2130622410 creator A5034306085 @default.
- W2130622410 creator A5037389374 @default.
- W2130622410 creator A5046287902 @default.
- W2130622410 creator A5077654529 @default.
- W2130622410 date "2006-11-01" @default.
- W2130622410 modified "2023-10-06" @default.
- W2130622410 title "Hierarchical development of training database for artificial neural network-based damage identification" @default.
- W2130622410 cites W1970298806 @default.
- W2130622410 cites W1985890897 @default.
- W2130622410 cites W1996303639 @default.
- W2130622410 cites W2015827972 @default.
- W2130622410 cites W2051934118 @default.
- W2130622410 cites W2054446276 @default.
- W2130622410 cites W2055615036 @default.
- W2130622410 cites W2058121935 @default.
- W2130622410 cites W2065139282 @default.
- W2130622410 cites W2070076468 @default.
- W2130622410 cites W2076542464 @default.
- W2130622410 cites W2078618054 @default.
- W2130622410 cites W2087650734 @default.
- W2130622410 cites W2164833967 @default.
- W2130622410 doi "https://doi.org/10.1016/j.compstruct.2006.06.029" @default.
- W2130622410 hasPublicationYear "2006" @default.
- W2130622410 type Work @default.
- W2130622410 sameAs 2130622410 @default.
- W2130622410 citedByCount "18" @default.
- W2130622410 countsByYear W21306224102014 @default.
- W2130622410 countsByYear W21306224102015 @default.
- W2130622410 countsByYear W21306224102017 @default.
- W2130622410 countsByYear W21306224102018 @default.
- W2130622410 countsByYear W21306224102019 @default.
- W2130622410 countsByYear W21306224102020 @default.
- W2130622410 countsByYear W21306224102021 @default.
- W2130622410 countsByYear W21306224102022 @default.
- W2130622410 countsByYear W21306224102023 @default.
- W2130622410 crossrefType "journal-article" @default.
- W2130622410 hasAuthorship W2130622410A5019835581 @default.
- W2130622410 hasAuthorship W2130622410A5034306085 @default.
- W2130622410 hasAuthorship W2130622410A5037389374 @default.
- W2130622410 hasAuthorship W2130622410A5046287902 @default.
- W2130622410 hasAuthorship W2130622410A5077654529 @default.
- W2130622410 hasConcept C116834253 @default.
- W2130622410 hasConcept C119857082 @default.
- W2130622410 hasConcept C121332964 @default.
- W2130622410 hasConcept C124101348 @default.
- W2130622410 hasConcept C153294291 @default.
- W2130622410 hasConcept C154945302 @default.
- W2130622410 hasConcept C26517878 @default.
- W2130622410 hasConcept C2777211547 @default.
- W2130622410 hasConcept C38652104 @default.
- W2130622410 hasConcept C41008148 @default.
- W2130622410 hasConcept C50644808 @default.
- W2130622410 hasConcept C59822182 @default.
- W2130622410 hasConcept C86803240 @default.
- W2130622410 hasConceptScore W2130622410C116834253 @default.
- W2130622410 hasConceptScore W2130622410C119857082 @default.
- W2130622410 hasConceptScore W2130622410C121332964 @default.
- W2130622410 hasConceptScore W2130622410C124101348 @default.
- W2130622410 hasConceptScore W2130622410C153294291 @default.
- W2130622410 hasConceptScore W2130622410C154945302 @default.
- W2130622410 hasConceptScore W2130622410C26517878 @default.
- W2130622410 hasConceptScore W2130622410C2777211547 @default.
- W2130622410 hasConceptScore W2130622410C38652104 @default.
- W2130622410 hasConceptScore W2130622410C41008148 @default.
- W2130622410 hasConceptScore W2130622410C50644808 @default.
- W2130622410 hasConceptScore W2130622410C59822182 @default.
- W2130622410 hasConceptScore W2130622410C86803240 @default.
- W2130622410 hasIssue "3" @default.
- W2130622410 hasLocation W21306224101 @default.
- W2130622410 hasOpenAccess W2130622410 @default.
- W2130622410 hasPrimaryLocation W21306224101 @default.
- W2130622410 hasRelatedWork W2329452785 @default.
- W2130622410 hasRelatedWork W2356380379 @default.
- W2130622410 hasRelatedWork W2961085424 @default.
- W2130622410 hasRelatedWork W3046775127 @default.
- W2130622410 hasRelatedWork W3170094116 @default.
- W2130622410 hasRelatedWork W4285260836 @default.
- W2130622410 hasRelatedWork W4286629047 @default.
- W2130622410 hasRelatedWork W4306321456 @default.
- W2130622410 hasRelatedWork W4306674287 @default.
- W2130622410 hasRelatedWork W4224009465 @default.
- W2130622410 hasVolume "76" @default.
- W2130622410 isParatext "false" @default.
- W2130622410 isRetracted "false" @default.
- W2130622410 magId "2130622410" @default.
- W2130622410 workType "article" @default.