Matches in SemOpenAlex for { <https://semopenalex.org/work/W2130729839> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2130729839 endingPage "618" @default.
- W2130729839 startingPage "612" @default.
- W2130729839 abstract "Abstract Motivation: Due to the recent advances in technology of mass spectrometry, there has been an exponential increase in the amount of data being generated in the past few years. Database searches have not been able to keep with this data explosion. Thus, speeding up the data searches becomes increasingly important in mass-spectrometry-based applications. Traditional database search methods use one-against-all comparisons of a query spectrum against a very large number of peptides generated from in silico digestion of protein sequences in a database, to filter potential candidates from this database followed by a detailed scoring and ranking of those filtered candidates. Results: In this article, we show that we can avoid the one-against-all comparisons. The basic idea is to design a set of hash functions to pre-process peptides in the database such that for each query spectrum we can use the hash functions to find only a small subset of peptide sequences that are most likely to match the spectrum. The construction of each hash function is based on a random spectrum and the hash value of a peptide is the normalized shared peak counts score (cosine) between the random spectrum and the hypothetical spectrum of the peptide. To implement this idea, we first embed each peptide into a unit vector in a high-dimensional metric space. The random spectrum is represented by a random vector, and we use random vectors to construct a set of hash functions called locality sensitive hashing (LSH) for preprocessing. We demonstrate that our mapping is accurate. We show that our method can filter out >95.65% of the spectra without missing any correct sequences, or gain 111 times speedup by filtering out 99.64% of spectra while missing at most 0.19% (2 out of 1014) of the correct sequences. In addition, we show that our method can be effectively used for other mass spectra mining applications such as finding clusters of spectra efficiently and accurately. Contact: tingchen@usc.edu Supplementary information: Supplementary data are available at Bioinformatics online." @default.
- W2130729839 created "2016-06-24" @default.
- W2130729839 creator A5050714727 @default.
- W2130729839 creator A5077716269 @default.
- W2130729839 date "2007-01-19" @default.
- W2130729839 modified "2023-10-17" @default.
- W2130729839 title "Speeding up tandem mass spectrometry database search: metric embeddings and fast near neighbor search" @default.
- W2130729839 cites W1543113652 @default.
- W2130729839 cites W1987869696 @default.
- W2130729839 cites W2013255353 @default.
- W2130729839 cites W2023096047 @default.
- W2130729839 cites W2026465178 @default.
- W2130729839 cites W2053827324 @default.
- W2130729839 cites W2059572899 @default.
- W2130729839 cites W2079056345 @default.
- W2130729839 cites W2139927267 @default.
- W2130729839 cites W2157354442 @default.
- W2130729839 cites W2162006472 @default.
- W2130729839 doi "https://doi.org/10.1093/bioinformatics/btl645" @default.
- W2130729839 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17237061" @default.
- W2130729839 hasPublicationYear "2007" @default.
- W2130729839 type Work @default.
- W2130729839 sameAs 2130729839 @default.
- W2130729839 citedByCount "52" @default.
- W2130729839 countsByYear W21307298392012 @default.
- W2130729839 countsByYear W21307298392013 @default.
- W2130729839 countsByYear W21307298392014 @default.
- W2130729839 countsByYear W21307298392016 @default.
- W2130729839 countsByYear W21307298392018 @default.
- W2130729839 countsByYear W21307298392019 @default.
- W2130729839 countsByYear W21307298392020 @default.
- W2130729839 countsByYear W21307298392021 @default.
- W2130729839 countsByYear W21307298392022 @default.
- W2130729839 crossrefType "journal-article" @default.
- W2130729839 hasAuthorship W2130729839A5050714727 @default.
- W2130729839 hasAuthorship W2130729839A5077716269 @default.
- W2130729839 hasBestOaLocation W21307298391 @default.
- W2130729839 hasConcept C108546238 @default.
- W2130729839 hasConcept C11413529 @default.
- W2130729839 hasConcept C124101348 @default.
- W2130729839 hasConcept C138111711 @default.
- W2130729839 hasConcept C177264268 @default.
- W2130729839 hasConcept C187062812 @default.
- W2130729839 hasConcept C199360897 @default.
- W2130729839 hasConcept C23123220 @default.
- W2130729839 hasConcept C38652104 @default.
- W2130729839 hasConcept C41008148 @default.
- W2130729839 hasConcept C48000682 @default.
- W2130729839 hasConcept C67388219 @default.
- W2130729839 hasConcept C74270461 @default.
- W2130729839 hasConcept C77088390 @default.
- W2130729839 hasConcept C97854310 @default.
- W2130729839 hasConcept C99138194 @default.
- W2130729839 hasConceptScore W2130729839C108546238 @default.
- W2130729839 hasConceptScore W2130729839C11413529 @default.
- W2130729839 hasConceptScore W2130729839C124101348 @default.
- W2130729839 hasConceptScore W2130729839C138111711 @default.
- W2130729839 hasConceptScore W2130729839C177264268 @default.
- W2130729839 hasConceptScore W2130729839C187062812 @default.
- W2130729839 hasConceptScore W2130729839C199360897 @default.
- W2130729839 hasConceptScore W2130729839C23123220 @default.
- W2130729839 hasConceptScore W2130729839C38652104 @default.
- W2130729839 hasConceptScore W2130729839C41008148 @default.
- W2130729839 hasConceptScore W2130729839C48000682 @default.
- W2130729839 hasConceptScore W2130729839C67388219 @default.
- W2130729839 hasConceptScore W2130729839C74270461 @default.
- W2130729839 hasConceptScore W2130729839C77088390 @default.
- W2130729839 hasConceptScore W2130729839C97854310 @default.
- W2130729839 hasConceptScore W2130729839C99138194 @default.
- W2130729839 hasIssue "5" @default.
- W2130729839 hasLocation W21307298391 @default.
- W2130729839 hasLocation W21307298392 @default.
- W2130729839 hasOpenAccess W2130729839 @default.
- W2130729839 hasPrimaryLocation W21307298391 @default.
- W2130729839 hasRelatedWork W1600184780 @default.
- W2130729839 hasRelatedWork W1870428314 @default.
- W2130729839 hasRelatedWork W1979795732 @default.
- W2130729839 hasRelatedWork W2054549325 @default.
- W2130729839 hasRelatedWork W2130729839 @default.
- W2130729839 hasRelatedWork W2144265691 @default.
- W2130729839 hasRelatedWork W2262279868 @default.
- W2130729839 hasRelatedWork W2783286101 @default.
- W2130729839 hasRelatedWork W2953019775 @default.
- W2130729839 hasRelatedWork W3124563862 @default.
- W2130729839 hasVolume "23" @default.
- W2130729839 isParatext "false" @default.
- W2130729839 isRetracted "false" @default.
- W2130729839 magId "2130729839" @default.
- W2130729839 workType "article" @default.