Matches in SemOpenAlex for { <https://semopenalex.org/work/W2130894448> ?p ?o ?g. }
- W2130894448 endingPage "405" @default.
- W2130894448 startingPage "383" @default.
- W2130894448 abstract "We present a detailed derivation of the closed-form expression for the diffusion coefficient that was initially obtained by Einstein.[4] in press. [Google Scholar] The present derivation does not make use of a fictitious force as did the original Einstein derivation, but instead concentrates directly on establishing a dynamic equilibrium between the forces of pressure and friction acting on a Brownian particle. This approach makes it easier to understand the true essence of the argument, and thus makes it simpler to apply the argument in a more general case or setting. We demonstrate this by deriving the equation of motion of a Brownian particle that is under the influence of an external force in the fluid with a non-constant temperature. This equation extends the well-known Smoluchowski approximation[24] Smoluchowski, M. von. 1915. Über Brownsche Molekularbewegung unter Einwirkung äußerer Kräfte und deren Zusammenhang mit der verallgemeinerten Diffusionsgleichung. Ann. Phys., 48: 1103–1112. [Google Scholar] to the case of non-constant temperature, and offers new insights into the Ludwig–Soret and Enskog–Chapman effects (providing also a scholar example explaining the need for a stochastic integral). The key point in the derivation is reached by applying the Einstein dynamic equilibrium argument together with the conservation of the number of particles law. We show that this approach leads directly to the Kolmogorov forward equation whenever the setting is Markovian. The same method can also be applied in the case of interacting Brownian particles satisfying the van der Waals equation. In this setting we first demonstrate that the presence of short-range repulsive forces between Brownian particles tends to increase the diffusion coefficient, and the presence of long-range attractive forces between Brownian particles tends to decrease it. The method of derivation then leads to a nonlinear partial differential equation which in the case of weak interaction reduces to the Fokker–Planck equation. One of the main aims of the present article is to demonstrate that the Einstein argument leads to a truly dynamical theory of diffusion." @default.
- W2130894448 created "2016-06-24" @default.
- W2130894448 creator A5053033536 @default.
- W2130894448 date "2003-08-01" @default.
- W2130894448 modified "2023-10-16" @default.
- W2130894448 title "On the Diffusion Coefficient: The Einstein Relation and Beyond" @default.
- W2130894448 cites W1473730842 @default.
- W2130894448 cites W1968848806 @default.
- W2130894448 cites W1977380163 @default.
- W2130894448 cites W1980359283 @default.
- W2130894448 cites W1984000158 @default.
- W2130894448 cites W1999011376 @default.
- W2130894448 cites W2017957151 @default.
- W2130894448 cites W2022076775 @default.
- W2130894448 cites W2037200286 @default.
- W2130894448 cites W2053530509 @default.
- W2130894448 cites W2085266415 @default.
- W2130894448 cites W2089143274 @default.
- W2130894448 cites W2106686952 @default.
- W2130894448 cites W2144687483 @default.
- W2130894448 cites W2162488624 @default.
- W2130894448 cites W2172912819 @default.
- W2130894448 cites W2607774600 @default.
- W2130894448 cites W4240384253 @default.
- W2130894448 cites W4298389050 @default.
- W2130894448 cites W4300023393 @default.
- W2130894448 doi "https://doi.org/10.1081/stm-120023566" @default.
- W2130894448 hasPublicationYear "2003" @default.
- W2130894448 type Work @default.
- W2130894448 sameAs 2130894448 @default.
- W2130894448 citedByCount "38" @default.
- W2130894448 countsByYear W21308944482012 @default.
- W2130894448 countsByYear W21308944482013 @default.
- W2130894448 countsByYear W21308944482014 @default.
- W2130894448 countsByYear W21308944482015 @default.
- W2130894448 countsByYear W21308944482016 @default.
- W2130894448 countsByYear W21308944482017 @default.
- W2130894448 countsByYear W21308944482018 @default.
- W2130894448 countsByYear W21308944482019 @default.
- W2130894448 countsByYear W21308944482020 @default.
- W2130894448 countsByYear W21308944482021 @default.
- W2130894448 countsByYear W21308944482022 @default.
- W2130894448 countsByYear W21308944482023 @default.
- W2130894448 crossrefType "journal-article" @default.
- W2130894448 hasAuthorship W2130894448A5053033536 @default.
- W2130894448 hasConcept C105795698 @default.
- W2130894448 hasConcept C112401455 @default.
- W2130894448 hasConcept C121332964 @default.
- W2130894448 hasConcept C121864883 @default.
- W2130894448 hasConcept C126061179 @default.
- W2130894448 hasConcept C146846114 @default.
- W2130894448 hasConcept C162324750 @default.
- W2130894448 hasConcept C176217482 @default.
- W2130894448 hasConcept C199360897 @default.
- W2130894448 hasConcept C21547014 @default.
- W2130894448 hasConcept C2777027219 @default.
- W2130894448 hasConcept C2780790625 @default.
- W2130894448 hasConcept C3017618536 @default.
- W2130894448 hasConcept C32909587 @default.
- W2130894448 hasConcept C33923547 @default.
- W2130894448 hasConcept C37914503 @default.
- W2130894448 hasConcept C41008148 @default.
- W2130894448 hasConcept C56739046 @default.
- W2130894448 hasConcept C62520636 @default.
- W2130894448 hasConcept C68710425 @default.
- W2130894448 hasConcept C69357855 @default.
- W2130894448 hasConcept C74650414 @default.
- W2130894448 hasConceptScore W2130894448C105795698 @default.
- W2130894448 hasConceptScore W2130894448C112401455 @default.
- W2130894448 hasConceptScore W2130894448C121332964 @default.
- W2130894448 hasConceptScore W2130894448C121864883 @default.
- W2130894448 hasConceptScore W2130894448C126061179 @default.
- W2130894448 hasConceptScore W2130894448C146846114 @default.
- W2130894448 hasConceptScore W2130894448C162324750 @default.
- W2130894448 hasConceptScore W2130894448C176217482 @default.
- W2130894448 hasConceptScore W2130894448C199360897 @default.
- W2130894448 hasConceptScore W2130894448C21547014 @default.
- W2130894448 hasConceptScore W2130894448C2777027219 @default.
- W2130894448 hasConceptScore W2130894448C2780790625 @default.
- W2130894448 hasConceptScore W2130894448C3017618536 @default.
- W2130894448 hasConceptScore W2130894448C32909587 @default.
- W2130894448 hasConceptScore W2130894448C33923547 @default.
- W2130894448 hasConceptScore W2130894448C37914503 @default.
- W2130894448 hasConceptScore W2130894448C41008148 @default.
- W2130894448 hasConceptScore W2130894448C56739046 @default.
- W2130894448 hasConceptScore W2130894448C62520636 @default.
- W2130894448 hasConceptScore W2130894448C68710425 @default.
- W2130894448 hasConceptScore W2130894448C69357855 @default.
- W2130894448 hasConceptScore W2130894448C74650414 @default.
- W2130894448 hasIssue "3" @default.
- W2130894448 hasLocation W21308944481 @default.
- W2130894448 hasOpenAccess W2130894448 @default.
- W2130894448 hasPrimaryLocation W21308944481 @default.
- W2130894448 hasRelatedWork W1483557212 @default.
- W2130894448 hasRelatedWork W1974544157 @default.
- W2130894448 hasRelatedWork W2037194035 @default.
- W2130894448 hasRelatedWork W2072097195 @default.
- W2130894448 hasRelatedWork W2089143274 @default.