Matches in SemOpenAlex for { <https://semopenalex.org/work/W2131142968> ?p ?o ?g. }
- W2131142968 endingPage "684" @default.
- W2131142968 startingPage "629" @default.
- W2131142968 abstract "This study integrates new and extant zircon U-Pb age and Hf isotope data, whole-rock Nd-Sr isotope data, and geochemistry data from the Chinese Altay (CA) and adjacent areas, in an attempt to identify the source rocks of granitoids and acidic-intermediate volcanic rocks and, hence, continental-crust growth in the CA. The protolith of the gneisses includes the earliest products of erosion from the surface rocks of the island arc volcanics and the syn- and post-collisional granitoids of the Caledonian orogenic-mountain system, whereas the provenance of metasedimentary rocks was exposed from increasingly deeper levels or from an expanded region that evolved from the axis to the flank of the mountain system as it was denuded until planation such that eroded material from the Tuva-Mongol microcontinental block to the east could be delivered to the CA. The CA tends to be more mafic and isotopically more primitive with depth, because material eroded early constitutes the lower section and material eroded late constitutes the upper section of the Early-Paleozoic sedimentary-pile. Source rocks for the granitoids and acidic-intermediate volcanic rocks of the CA include the eroded material from the microcontinental block, the eroded material from the syn- and post-collisional granitoids of the Caledonian province, MORB-type mafic rocks, and a minor component from the metasomatized lithospheric-mantle. Eroded material from the terrains north of the CA was first deposited as an Early-Paleozoic sedimentary-pile in the CA. The top section of this pile was again eroded and transported to the trench at the CA continental margin, and these second-round sediments were subducted beneath the CA accretionary wedge. The un-eroded lower section of the Early-Paleozoic sedimentary-pile lay at bottom of the CA accretionary wedge that was underplated by MORB-type mafic rocks. The CA granitoids can be divided into orogenic (460-360 Ma) and post-orogenic (∼320-260 Ma). The orogenic granitoids can be subdivided into Groups 1 (ɛ<sub>Nd</sub> (<i>t</i>) < +1) and 2 (ɛ<sub>Nd</sub> (<i>t</i>) mostly higher than +1). The main branch of the granitoids (67 data) that includes Group 1 and a majority of Group 2 were derived mainly from eroded materials from the Caledonian province and the Tuva-Mongol microcontinental block. The source rock of acidic-intermediate volcanic rocks was dominantly eroded materials from the latter. The granitoids in the Erqisi nappe at the junction between the CA and the Junggar are characterized by a mixed source between MORB-like mafic rocks and juvenile crustal-rocks. The Mid-Devonian dacite-rhyolite and dolerite dikes in the west Chinese Altay were derived from metasomatized lithospheric-mantle. Integrated isotope and geochemistry data further constrain the source compositions of granitoids. The granitoids in the northwest Chinese Altay were mainly derived from subducted sediment that was eroded from the top section of the Early-Paleozoic sedimentary-pile, whereas those in the east Chinese Altay were derived dominantly from the lower section of the pile. The source rock of the granitoids in the northeast of the middle Chinese Altay consists of the lower section of the Early-Paleozoic sedimentary-pile; and sediment, quartz keratophyre, and keratophyre that were subducted or thrust beneath the northern Chinese Altay. The main source rock of the granitoids in the southwest of the middle Chinese Altay varies between the subducted sediment in the westernmost segment and the lower section of the Early-Paleozoic sedimentary-pile and the mafic underplate to the east. A geophysical-sounding profile across the CA and East Junggar reveals a three-layer structure of the CA accretionary-wedge underplated by an oceanic lithosphere that was detached from the downgoing oceanic-spreading-center. From the Silurian to the Mid-Late Devonian, the active spreading-center was repeatedly subducted beneath the CA along a southwestward-retreating subduction zone as represented successively by four NE-dipping thrust faults that converge to a low-angle décollement at depth. Asthenospheric upwelling heated and melted the subducted sediment and the lower section of the Early-Paleozoic sedimentary-pile, along with the mafic underplate and generated the acidic-intermediate volcanic rocks and granitoids that culminated at ∼400 Ma. During the Mid-Devonian, shallow dipping dècollement-like subduction changed to a steeply dipping subduction beneath the lithospheric-mantle wedge. The mantle wedge shielded the CA crust from heating from the subducting spreading-center, which resulted in waning granitoid magmatism from ∼400 Ma to ∼360 Ma. In conclusion, there was massive granitoid production but not massive continental-crust growth in the CA at ∼400 Ma." @default.
- W2131142968 created "2016-06-24" @default.
- W2131142968 creator A5054989150 @default.
- W2131142968 creator A5064936522 @default.
- W2131142968 creator A5081881818 @default.
- W2131142968 date "2012-06-01" @default.
- W2131142968 modified "2023-10-14" @default.
- W2131142968 title "Massive granitoid production without massive continental-crust growth in the Chinese Altay: Insight into the source rock of granitoids using integrated zircon U-Pb age, Hf-Nd-Sr isotopes and geochemistry" @default.
- W2131142968 cites W1534101527 @default.
- W2131142968 cites W1603990953 @default.
- W2131142968 cites W1624806571 @default.
- W2131142968 cites W183765136 @default.
- W2131142968 cites W1871734886 @default.
- W2131142968 cites W1964276781 @default.
- W2131142968 cites W1965639504 @default.
- W2131142968 cites W1970439132 @default.
- W2131142968 cites W1971284558 @default.
- W2131142968 cites W1975078291 @default.
- W2131142968 cites W1975924857 @default.
- W2131142968 cites W1979831143 @default.
- W2131142968 cites W1983810704 @default.
- W2131142968 cites W1986966636 @default.
- W2131142968 cites W2000821587 @default.
- W2131142968 cites W2001552374 @default.
- W2131142968 cites W2006340412 @default.
- W2131142968 cites W2006513003 @default.
- W2131142968 cites W2009959731 @default.
- W2131142968 cites W2010233366 @default.
- W2131142968 cites W2026851691 @default.
- W2131142968 cites W2027857855 @default.
- W2131142968 cites W2030057637 @default.
- W2131142968 cites W2037498963 @default.
- W2131142968 cites W2037873145 @default.
- W2131142968 cites W2038449935 @default.
- W2131142968 cites W2040029696 @default.
- W2131142968 cites W2042266298 @default.
- W2131142968 cites W2047807381 @default.
- W2131142968 cites W2051273227 @default.
- W2131142968 cites W2060077663 @default.
- W2131142968 cites W2060823328 @default.
- W2131142968 cites W2063734888 @default.
- W2131142968 cites W2076566162 @default.
- W2131142968 cites W2080187059 @default.
- W2131142968 cites W2080273792 @default.
- W2131142968 cites W2085431448 @default.
- W2131142968 cites W2089096123 @default.
- W2131142968 cites W2090206242 @default.
- W2131142968 cites W2090278244 @default.
- W2131142968 cites W2095583893 @default.
- W2131142968 cites W2096021121 @default.
- W2131142968 cites W2107500918 @default.
- W2131142968 cites W2108343693 @default.
- W2131142968 cites W2112109341 @default.
- W2131142968 cites W2124328380 @default.
- W2131142968 cites W2132769552 @default.
- W2131142968 cites W2141951312 @default.
- W2131142968 cites W2144701379 @default.
- W2131142968 cites W2145087726 @default.
- W2131142968 cites W2153500334 @default.
- W2131142968 cites W2154143939 @default.
- W2131142968 cites W2155327602 @default.
- W2131142968 cites W2158952580 @default.
- W2131142968 cites W2162997816 @default.
- W2131142968 cites W2173603258 @default.
- W2131142968 cites W2332345147 @default.
- W2131142968 cites W2375047370 @default.
- W2131142968 cites W2384845096 @default.
- W2131142968 cites W2385074735 @default.
- W2131142968 cites W3145926605 @default.
- W2131142968 cites W833804314 @default.
- W2131142968 doi "https://doi.org/10.2475/06.2012.02" @default.
- W2131142968 hasPublicationYear "2012" @default.
- W2131142968 type Work @default.
- W2131142968 sameAs 2131142968 @default.
- W2131142968 citedByCount "64" @default.
- W2131142968 countsByYear W21311429682013 @default.
- W2131142968 countsByYear W21311429682014 @default.
- W2131142968 countsByYear W21311429682015 @default.
- W2131142968 countsByYear W21311429682016 @default.
- W2131142968 countsByYear W21311429682017 @default.
- W2131142968 countsByYear W21311429682018 @default.
- W2131142968 countsByYear W21311429682019 @default.
- W2131142968 countsByYear W21311429682020 @default.
- W2131142968 countsByYear W21311429682021 @default.
- W2131142968 countsByYear W21311429682022 @default.
- W2131142968 countsByYear W21311429682023 @default.
- W2131142968 crossrefType "journal-article" @default.
- W2131142968 hasAuthorship W2131142968A5054989150 @default.
- W2131142968 hasAuthorship W2131142968A5064936522 @default.
- W2131142968 hasAuthorship W2131142968A5081881818 @default.
- W2131142968 hasConcept C120806208 @default.
- W2131142968 hasConcept C127313418 @default.
- W2131142968 hasConcept C141646446 @default.
- W2131142968 hasConcept C167284885 @default.
- W2131142968 hasConcept C171701179 @default.
- W2131142968 hasConcept C17409809 @default.
- W2131142968 hasConcept C192241223 @default.
- W2131142968 hasConcept C26687426 @default.