Matches in SemOpenAlex for { <https://semopenalex.org/work/W2131333799> ?p ?o ?g. }
- W2131333799 endingPage "476" @default.
- W2131333799 startingPage "464" @default.
- W2131333799 abstract "Denoising is a classical challenging problem in medical image processing and understanding. In this study, the authors propose a novel generalised Gaussian mixture model (GGMM) with edge information to denoise medical images. In the first stage, they extend Gaussian mixture model to the GGMM for modelling the noisy medical images and use minimum-mean-square error under the Bayesian framework to derive a non-linear mapping function for processing the noisy images. In the second stage, they refine the results by the kernel density function of the edge information. Experimental results on the Simulated Brain Database and real computed tomography abdomen images demonstrate that GGMM-Edge Information achieves very competitive denoising performance, especially the image grey, visual quality and edge preservation in detail, compared with several state-of-the-art denoising algorithms." @default.
- W2131333799 created "2016-06-24" @default.
- W2131333799 creator A5051692199 @default.
- W2131333799 creator A5055673445 @default.
- W2131333799 creator A5057715921 @default.
- W2131333799 date "2014-08-01" @default.
- W2131333799 modified "2023-10-11" @default.
- W2131333799 title "Medical image denoising by generalised Gaussian mixture modelling with edge information" @default.
- W2131333799 cites W1552089245 @default.
- W2131333799 cites W1989011241 @default.
- W2131333799 cites W1991514823 @default.
- W2131333799 cites W2006262236 @default.
- W2131333799 cites W2012807998 @default.
- W2131333799 cites W2017236761 @default.
- W2131333799 cites W2036793532 @default.
- W2131333799 cites W2040675601 @default.
- W2131333799 cites W2041201001 @default.
- W2131333799 cites W2042513913 @default.
- W2131333799 cites W2052199757 @default.
- W2131333799 cites W2071481167 @default.
- W2131333799 cites W2073660032 @default.
- W2131333799 cites W2081553857 @default.
- W2131333799 cites W2085692415 @default.
- W2131333799 cites W2113945798 @default.
- W2131333799 cites W2124097965 @default.
- W2131333799 cites W2132984323 @default.
- W2131333799 cites W2133665775 @default.
- W2131333799 cites W2134495751 @default.
- W2131333799 cites W2147985697 @default.
- W2131333799 cites W2158940042 @default.
- W2131333799 cites W2168175751 @default.
- W2131333799 cites W2168896212 @default.
- W2131333799 cites W2543461915 @default.
- W2131333799 cites W4299296142 @default.
- W2131333799 doi "https://doi.org/10.1049/iet-ipr.2013.0202" @default.
- W2131333799 hasPublicationYear "2014" @default.
- W2131333799 type Work @default.
- W2131333799 sameAs 2131333799 @default.
- W2131333799 citedByCount "19" @default.
- W2131333799 countsByYear W21313337992015 @default.
- W2131333799 countsByYear W21313337992016 @default.
- W2131333799 countsByYear W21313337992018 @default.
- W2131333799 countsByYear W21313337992019 @default.
- W2131333799 countsByYear W21313337992020 @default.
- W2131333799 countsByYear W21313337992021 @default.
- W2131333799 countsByYear W21313337992023 @default.
- W2131333799 crossrefType "journal-article" @default.
- W2131333799 hasAuthorship W2131333799A5051692199 @default.
- W2131333799 hasAuthorship W2131333799A5055673445 @default.
- W2131333799 hasAuthorship W2131333799A5057715921 @default.
- W2131333799 hasBestOaLocation W21313337991 @default.
- W2131333799 hasConcept C105795698 @default.
- W2131333799 hasConcept C114614502 @default.
- W2131333799 hasConcept C115961682 @default.
- W2131333799 hasConcept C121332964 @default.
- W2131333799 hasConcept C153180895 @default.
- W2131333799 hasConcept C154945302 @default.
- W2131333799 hasConcept C162307627 @default.
- W2131333799 hasConcept C163294075 @default.
- W2131333799 hasConcept C163716315 @default.
- W2131333799 hasConcept C185429906 @default.
- W2131333799 hasConcept C31601959 @default.
- W2131333799 hasConcept C31972630 @default.
- W2131333799 hasConcept C33923547 @default.
- W2131333799 hasConcept C41008148 @default.
- W2131333799 hasConcept C4199805 @default.
- W2131333799 hasConcept C62520636 @default.
- W2131333799 hasConcept C71134354 @default.
- W2131333799 hasConcept C7218915 @default.
- W2131333799 hasConcept C74193536 @default.
- W2131333799 hasConcept C9417928 @default.
- W2131333799 hasConcept C99498987 @default.
- W2131333799 hasConceptScore W2131333799C105795698 @default.
- W2131333799 hasConceptScore W2131333799C114614502 @default.
- W2131333799 hasConceptScore W2131333799C115961682 @default.
- W2131333799 hasConceptScore W2131333799C121332964 @default.
- W2131333799 hasConceptScore W2131333799C153180895 @default.
- W2131333799 hasConceptScore W2131333799C154945302 @default.
- W2131333799 hasConceptScore W2131333799C162307627 @default.
- W2131333799 hasConceptScore W2131333799C163294075 @default.
- W2131333799 hasConceptScore W2131333799C163716315 @default.
- W2131333799 hasConceptScore W2131333799C185429906 @default.
- W2131333799 hasConceptScore W2131333799C31601959 @default.
- W2131333799 hasConceptScore W2131333799C31972630 @default.
- W2131333799 hasConceptScore W2131333799C33923547 @default.
- W2131333799 hasConceptScore W2131333799C41008148 @default.
- W2131333799 hasConceptScore W2131333799C4199805 @default.
- W2131333799 hasConceptScore W2131333799C62520636 @default.
- W2131333799 hasConceptScore W2131333799C71134354 @default.
- W2131333799 hasConceptScore W2131333799C7218915 @default.
- W2131333799 hasConceptScore W2131333799C74193536 @default.
- W2131333799 hasConceptScore W2131333799C9417928 @default.
- W2131333799 hasConceptScore W2131333799C99498987 @default.
- W2131333799 hasFunder F4320322769 @default.
- W2131333799 hasIssue "8" @default.
- W2131333799 hasLocation W21313337991 @default.
- W2131333799 hasOpenAccess W2131333799 @default.
- W2131333799 hasPrimaryLocation W21313337991 @default.