Matches in SemOpenAlex for { <https://semopenalex.org/work/W2131452922> ?p ?o ?g. }
- W2131452922 endingPage "114" @default.
- W2131452922 startingPage "93" @default.
- W2131452922 abstract "We compare heat flow data from the Precambrian shields in North America and in South Africa. We also review data available in other less well-sampled Shield regions. Variations in crustal heat production account for most of the variability of the heat flow. Because of this variability, it is difficult to define a single average crustal model representative of a whole tectonic province. The average heat flow values of different Archean provinces in Canada, South Africa, Australia and India differ by significant amounts. This is also true for Proterozoic provinces. For example, the heat flow is significantly higher in the Proterozoic Namaqua-Natal Belt of South Africa than in the Grenville Province of the Canadian Shield (61 vs. 41 mW m−2 on average). These observations indicate that it is not possible to define single value of the average heat flow for all provinces of the same crustal age. Large amplitude short wavelength variations of the heat flow suggest that most of the difference between Proterozoic and Archean heat flow is of crustal origin. In eastern Canada, there is no good correlation between the local values of heat flow and heat production. In the Archean, Proterozoic and Paleozoic provinces of eastern Canada, heat flow values through rocks with the same heat production are not significantly different. There is therefore no evidence for variations of the mantle heat flow beneath these different provinces. After removing the local crustal heat production from the surface heat flow, the mantle (Moho) heat flow was estimated to be between 10–15 mW m−2 in the Archean, Proterozoic and Paleozoic provinces of eastern Canada. Estimates of the mantle heat flow in the Kaapvaal craton of South Africa may be slightly higher (≈17 mW m−2). Large-scale variations of bulk crustal heat production are well-documented in Canada and imply significant differences of deep lithospheric thermal structure. In thick lithosphere, surficial heart flow measurements record a time average of heat production in the lithospheric mantle and are not in equilibrium with the instantaneous heat production. The low mantle heat flow and current estimates of heat production in the lithospheric mantle do not support a mechanical (conductive) lithosphere thinner than 200 km and thicker than 330 km. Temperature anomalies with surrounding oceanic mantle extended to the convective boundary layer belong the conductive layer, and hence to depths greater than these estimates. Mechanical and thermal stability of the lithosphere require the mantle part of the lithosphere to be chemically buoyant and depleted in radiogenic elements. Both characteristics are achieved simultaneously by partial melting and melt extraction." @default.
- W2131452922 created "2016-06-24" @default.
- W2131452922 creator A5006500638 @default.
- W2131452922 creator A5009240701 @default.
- W2131452922 date "1999-01-01" @default.
- W2131452922 modified "2023-10-02" @default.
- W2131452922 title "The thermal structure and thickness of continental roots" @default.
- W2131452922 cites W1885129621 @default.
- W2131452922 cites W1964769797 @default.
- W2131452922 cites W1967763470 @default.
- W2131452922 cites W1973012528 @default.
- W2131452922 cites W1973603014 @default.
- W2131452922 cites W1979823946 @default.
- W2131452922 cites W1982822787 @default.
- W2131452922 cites W1984052571 @default.
- W2131452922 cites W1984520040 @default.
- W2131452922 cites W1987026347 @default.
- W2131452922 cites W1990104050 @default.
- W2131452922 cites W1990740187 @default.
- W2131452922 cites W1993090196 @default.
- W2131452922 cites W1996522891 @default.
- W2131452922 cites W1997973342 @default.
- W2131452922 cites W1998841391 @default.
- W2131452922 cites W1998859784 @default.
- W2131452922 cites W2004242108 @default.
- W2131452922 cites W2005877473 @default.
- W2131452922 cites W2012177214 @default.
- W2131452922 cites W2014155410 @default.
- W2131452922 cites W2018021437 @default.
- W2131452922 cites W2023428265 @default.
- W2131452922 cites W2023989699 @default.
- W2131452922 cites W2025244602 @default.
- W2131452922 cites W2025841258 @default.
- W2131452922 cites W2041868589 @default.
- W2131452922 cites W2041905619 @default.
- W2131452922 cites W2051808638 @default.
- W2131452922 cites W2055255149 @default.
- W2131452922 cites W2060813999 @default.
- W2131452922 cites W2062594643 @default.
- W2131452922 cites W2067120334 @default.
- W2131452922 cites W2070357761 @default.
- W2131452922 cites W2071162807 @default.
- W2131452922 cites W2074511487 @default.
- W2131452922 cites W2077582800 @default.
- W2131452922 cites W2077646970 @default.
- W2131452922 cites W2077822785 @default.
- W2131452922 cites W2078045198 @default.
- W2131452922 cites W2078640495 @default.
- W2131452922 cites W2080192250 @default.
- W2131452922 cites W2082410254 @default.
- W2131452922 cites W2085100681 @default.
- W2131452922 cites W2087099732 @default.
- W2131452922 cites W2088678792 @default.
- W2131452922 cites W2091416750 @default.
- W2131452922 cites W2097381052 @default.
- W2131452922 cites W2097502986 @default.
- W2131452922 cites W2100210332 @default.
- W2131452922 cites W2107639670 @default.
- W2131452922 cites W2108971722 @default.
- W2131452922 cites W2145681151 @default.
- W2131452922 cites W2178485105 @default.
- W2131452922 doi "https://doi.org/10.1016/s0419-0254(99)80007-x" @default.
- W2131452922 hasPublicationYear "1999" @default.
- W2131452922 type Work @default.
- W2131452922 sameAs 2131452922 @default.
- W2131452922 citedByCount "11" @default.
- W2131452922 countsByYear W21314529222015 @default.
- W2131452922 countsByYear W21314529222022 @default.
- W2131452922 countsByYear W21314529222023 @default.
- W2131452922 crossrefType "book-chapter" @default.
- W2131452922 hasAuthorship W2131452922A5006500638 @default.
- W2131452922 hasAuthorship W2131452922A5009240701 @default.
- W2131452922 hasConcept C127313418 @default.
- W2131452922 hasConcept C138081364 @default.
- W2131452922 hasConcept C147717901 @default.
- W2131452922 hasConcept C149347711 @default.
- W2131452922 hasConcept C151730666 @default.
- W2131452922 hasConcept C153294291 @default.
- W2131452922 hasConcept C159985019 @default.
- W2131452922 hasConcept C173776410 @default.
- W2131452922 hasConcept C192562407 @default.
- W2131452922 hasConcept C204530211 @default.
- W2131452922 hasConcept C205649164 @default.
- W2131452922 hasConcept C2985596519 @default.
- W2131452922 hasConcept C3020168488 @default.
- W2131452922 hasConcept C5900021 @default.
- W2131452922 hasConcept C67236022 @default.
- W2131452922 hasConcept C77928131 @default.
- W2131452922 hasConcept C8058405 @default.
- W2131452922 hasConcept C93033518 @default.
- W2131452922 hasConceptScore W2131452922C127313418 @default.
- W2131452922 hasConceptScore W2131452922C138081364 @default.
- W2131452922 hasConceptScore W2131452922C147717901 @default.
- W2131452922 hasConceptScore W2131452922C149347711 @default.
- W2131452922 hasConceptScore W2131452922C151730666 @default.
- W2131452922 hasConceptScore W2131452922C153294291 @default.
- W2131452922 hasConceptScore W2131452922C159985019 @default.
- W2131452922 hasConceptScore W2131452922C173776410 @default.