Matches in SemOpenAlex for { <https://semopenalex.org/work/W2131464395> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2131464395 endingPage "432" @default.
- W2131464395 startingPage "425" @default.
- W2131464395 abstract "Objective: Identification of ICU patients whose concentrations are likely to fall below therapeutic concentrations using artificial neural network (ANN) modelling and individual patient physiologic data. Method: Data on indicators of disease severity and some physiologic data were collected from 89 ICU patients who received arbekacin (ABK) and 61 who received amikacin (AMK). Three-layer ANN modelling and multivariate logistic regression analysis were used to predict the plasma concentrations of the aminoglycosides (ABK and AMK) in the severely ill patients. Results: Predictive performance analysis showed that the sensitivity and specificity of ANN modelling was superior to multivariate logistic regression analysis. For accurate modelling, a predictable range should be inferred from the data structure before the analysis. Restriction of the predictable region, based on the data structure, increased predictive performance. Conclusion: ANN analysis was superior to multivariate logistic regression analysis in predicting which patients would have plasma concentrations lower than the minimum therapeutic concentration. To improve predictive performance, the predictable range should be inferred from the data structure before prediction. When applying ANN modelling in clinical settings, the predictive performance and predictable region should be investigated in detail to avoid the risk of harm to severely ill patients." @default.
- W2131464395 created "2016-06-24" @default.
- W2131464395 creator A5013467646 @default.
- W2131464395 creator A5019175493 @default.
- W2131464395 creator A5035548664 @default.
- W2131464395 creator A5046258020 @default.
- W2131464395 creator A5047381618 @default.
- W2131464395 creator A5068418042 @default.
- W2131464395 creator A5088837944 @default.
- W2131464395 date "2003-10-01" @default.
- W2131464395 modified "2023-10-06" @default.
- W2131464395 title "Application of artificial neural network modelling to identify severely ill patients whose aminoglycoside concentrations are likely to fall below therapeutic concentrations" @default.
- W2131464395 cites W1546235217 @default.
- W2131464395 cites W1969131649 @default.
- W2131464395 cites W1973448749 @default.
- W2131464395 cites W1974846156 @default.
- W2131464395 cites W2020135355 @default.
- W2131464395 cites W2021958854 @default.
- W2131464395 cites W2054329949 @default.
- W2131464395 cites W2055106593 @default.
- W2131464395 cites W2063189541 @default.
- W2131464395 cites W2102389568 @default.
- W2131464395 cites W2110274812 @default.
- W2131464395 cites W2147346895 @default.
- W2131464395 cites W2312715682 @default.
- W2131464395 cites W2329686304 @default.
- W2131464395 cites W2331782240 @default.
- W2131464395 cites W27918916 @default.
- W2131464395 cites W4293242440 @default.
- W2131464395 cites W5032691 @default.
- W2131464395 doi "https://doi.org/10.1046/j.0269-4727.2003.00514.x" @default.
- W2131464395 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/14632968" @default.
- W2131464395 hasPublicationYear "2003" @default.
- W2131464395 type Work @default.
- W2131464395 sameAs 2131464395 @default.
- W2131464395 citedByCount "19" @default.
- W2131464395 countsByYear W21314643952020 @default.
- W2131464395 countsByYear W21314643952021 @default.
- W2131464395 crossrefType "journal-article" @default.
- W2131464395 hasAuthorship W2131464395A5013467646 @default.
- W2131464395 hasAuthorship W2131464395A5019175493 @default.
- W2131464395 hasAuthorship W2131464395A5035548664 @default.
- W2131464395 hasAuthorship W2131464395A5046258020 @default.
- W2131464395 hasAuthorship W2131464395A5047381618 @default.
- W2131464395 hasAuthorship W2131464395A5068418042 @default.
- W2131464395 hasAuthorship W2131464395A5088837944 @default.
- W2131464395 hasBestOaLocation W21314643951 @default.
- W2131464395 hasConcept C119857082 @default.
- W2131464395 hasConcept C126322002 @default.
- W2131464395 hasConcept C151956035 @default.
- W2131464395 hasConcept C161584116 @default.
- W2131464395 hasConcept C177713679 @default.
- W2131464395 hasConcept C194828623 @default.
- W2131464395 hasConcept C38180746 @default.
- W2131464395 hasConcept C41008148 @default.
- W2131464395 hasConcept C50644808 @default.
- W2131464395 hasConcept C71924100 @default.
- W2131464395 hasConceptScore W2131464395C119857082 @default.
- W2131464395 hasConceptScore W2131464395C126322002 @default.
- W2131464395 hasConceptScore W2131464395C151956035 @default.
- W2131464395 hasConceptScore W2131464395C161584116 @default.
- W2131464395 hasConceptScore W2131464395C177713679 @default.
- W2131464395 hasConceptScore W2131464395C194828623 @default.
- W2131464395 hasConceptScore W2131464395C38180746 @default.
- W2131464395 hasConceptScore W2131464395C41008148 @default.
- W2131464395 hasConceptScore W2131464395C50644808 @default.
- W2131464395 hasConceptScore W2131464395C71924100 @default.
- W2131464395 hasIssue "5" @default.
- W2131464395 hasLocation W21314643951 @default.
- W2131464395 hasLocation W21314643952 @default.
- W2131464395 hasOpenAccess W2131464395 @default.
- W2131464395 hasPrimaryLocation W21314643951 @default.
- W2131464395 hasRelatedWork W1570805059 @default.
- W2131464395 hasRelatedWork W1974427739 @default.
- W2131464395 hasRelatedWork W1976706884 @default.
- W2131464395 hasRelatedWork W1978357124 @default.
- W2131464395 hasRelatedWork W2032728545 @default.
- W2131464395 hasRelatedWork W2393274773 @default.
- W2131464395 hasRelatedWork W2406638334 @default.
- W2131464395 hasRelatedWork W2560762415 @default.
- W2131464395 hasRelatedWork W2889504422 @default.
- W2131464395 hasRelatedWork W4382044753 @default.
- W2131464395 hasVolume "28" @default.
- W2131464395 isParatext "false" @default.
- W2131464395 isRetracted "false" @default.
- W2131464395 magId "2131464395" @default.
- W2131464395 workType "article" @default.