Matches in SemOpenAlex for { <https://semopenalex.org/work/W2131752625> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2131752625 endingPage "50" @default.
- W2131752625 startingPage "39" @default.
- W2131752625 abstract "We investigate generic models for cortical microcircuits, i.e., recurrent circuits of integrate-and-fire neurons with dynamic synapses. These complex dynamic systems subserve the amazing information processing capabilities of the cortex, but are at the present time very little understood. We analyze the transient dynamics of models for neural microcircuits from the point of view of one or two readout neurons that collapse the high-dimensional transient dynamics of a neural circuit into a one- or two-dimensional output stream. This stream may for example represent the information that is projected from such circuit to some particular other brain area or actuators. It is shown that simple local learning rules enable a readout neuron to extract from the high-dimensional transient dynamics of a recurrent neural circuit quite different low-dimensional projections, which even may contain “virtual attractors” that are not apparent in the high-dimensional dynamics of the circuit itself. Furthermore it is demonstrated that the information extraction capabilities of linear readout neurons are boosted by the computational operations of a sufficiently large preceding neural microcircuit. Hence a generic neural microcircuit may play a similar role for information processing as a kernel for support vector machines in machine learning. We demonstrate that the projection of time-varying inputs into a large recurrent neural circuit enables a linear readout neuron to classify the time-varying circuit inputs with the same power as complex nonlinear classifiers, such as a pool of perceptrons trained by the p-delta rule or a feedforward sigmoidal neural net trained by backprop, provided that the size of the recurrent circuit is sufficiently large. At the same time such readout neurons can exploit the stability and speed of learning rules for linear classifiers, thereby overcoming the problems caused by local minima in the error function of nonlinear classifiers. In addition it is demonstrated that pairs of readout neurons can transform the complex trajectory of transient states of a large neural circuit into a simple and clearly structured two-dimensional trajectory. This two-dimensional projection of the high-dimensional trajectory can even exhibit convergence to virtual attractors that are not apparent in the high-dimensional trajectory. © 2003 Wiley Periodicals, Inc." @default.
- W2131752625 created "2016-06-24" @default.
- W2131752625 creator A5043339871 @default.
- W2131752625 creator A5050101232 @default.
- W2131752625 creator A5069964239 @default.
- W2131752625 date "2003-03-01" @default.
- W2131752625 modified "2023-10-01" @default.
- W2131752625 title "Perspectives of the high-dimensional dynamics of neural microcircuits from the point of view of low-dimensional readouts" @default.
- W2131752625 cites W1494770164 @default.
- W2131752625 cites W2054930781 @default.
- W2131752625 cites W2103179919 @default.
- W2131752625 cites W2118706970 @default.
- W2131752625 cites W2162019295 @default.
- W2131752625 cites W4249572517 @default.
- W2131752625 doi "https://doi.org/10.1002/cplx.10089" @default.
- W2131752625 hasPublicationYear "2003" @default.
- W2131752625 type Work @default.
- W2131752625 sameAs 2131752625 @default.
- W2131752625 citedByCount "18" @default.
- W2131752625 countsByYear W21317526252012 @default.
- W2131752625 countsByYear W21317526252015 @default.
- W2131752625 countsByYear W21317526252016 @default.
- W2131752625 countsByYear W21317526252017 @default.
- W2131752625 countsByYear W21317526252018 @default.
- W2131752625 countsByYear W21317526252020 @default.
- W2131752625 countsByYear W21317526252021 @default.
- W2131752625 crossrefType "journal-article" @default.
- W2131752625 hasAuthorship W2131752625A5043339871 @default.
- W2131752625 hasAuthorship W2131752625A5050101232 @default.
- W2131752625 hasAuthorship W2131752625A5069964239 @default.
- W2131752625 hasBestOaLocation W21317526252 @default.
- W2131752625 hasConcept C121332964 @default.
- W2131752625 hasConcept C121864883 @default.
- W2131752625 hasConcept C145912823 @default.
- W2131752625 hasConcept C15744967 @default.
- W2131752625 hasConcept C169760540 @default.
- W2131752625 hasConcept C186060115 @default.
- W2131752625 hasConcept C24890656 @default.
- W2131752625 hasConcept C2524010 @default.
- W2131752625 hasConcept C28719098 @default.
- W2131752625 hasConcept C33923547 @default.
- W2131752625 hasConcept C41008148 @default.
- W2131752625 hasConcept C86803240 @default.
- W2131752625 hasConceptScore W2131752625C121332964 @default.
- W2131752625 hasConceptScore W2131752625C121864883 @default.
- W2131752625 hasConceptScore W2131752625C145912823 @default.
- W2131752625 hasConceptScore W2131752625C15744967 @default.
- W2131752625 hasConceptScore W2131752625C169760540 @default.
- W2131752625 hasConceptScore W2131752625C186060115 @default.
- W2131752625 hasConceptScore W2131752625C24890656 @default.
- W2131752625 hasConceptScore W2131752625C2524010 @default.
- W2131752625 hasConceptScore W2131752625C28719098 @default.
- W2131752625 hasConceptScore W2131752625C33923547 @default.
- W2131752625 hasConceptScore W2131752625C41008148 @default.
- W2131752625 hasConceptScore W2131752625C86803240 @default.
- W2131752625 hasIssue "4" @default.
- W2131752625 hasLocation W21317526251 @default.
- W2131752625 hasLocation W21317526252 @default.
- W2131752625 hasOpenAccess W2131752625 @default.
- W2131752625 hasPrimaryLocation W21317526251 @default.
- W2131752625 hasRelatedWork W1036710517 @default.
- W2131752625 hasRelatedWork W1739118904 @default.
- W2131752625 hasRelatedWork W2015491864 @default.
- W2131752625 hasRelatedWork W2016579963 @default.
- W2131752625 hasRelatedWork W2235062249 @default.
- W2131752625 hasRelatedWork W223567488 @default.
- W2131752625 hasRelatedWork W2291302924 @default.
- W2131752625 hasRelatedWork W2777891191 @default.
- W2131752625 hasRelatedWork W3098391775 @default.
- W2131752625 hasRelatedWork W33244840 @default.
- W2131752625 hasVolume "8" @default.
- W2131752625 isParatext "false" @default.
- W2131752625 isRetracted "false" @default.
- W2131752625 magId "2131752625" @default.
- W2131752625 workType "article" @default.