Matches in SemOpenAlex for { <https://semopenalex.org/work/W2132288941> ?p ?o ?g. }
- W2132288941 endingPage "200" @default.
- W2132288941 startingPage "182" @default.
- W2132288941 abstract "The method of generalized cross-validation (GCV) has been widely used to determine the regularization parameter, because the criterion minimizes the average predicted residuals of measured data and depends solely on data. The data-driven advantage is valid only if the variance—covariance matrix of the data can be represented as the product of a given positive definite matrix and a scalar unknown noise variance. In practice, important geophysical inverse ill-posed problems have often been solved by combining different types of data. The stochastic model of measurements in this case contains a number of different unknown variance components. Although the weighting factors, or equivalently the variance components, have been shown to significantly affect joint inversion results of geophysical ill-posed problems, they have been either assumed to be known or empirically chosen. No solid statistical foundation is available yet to correctly determine the weighting factors of different types of data in joint geophysical inversion. We extend the GCV method to accommodate both the regularization parameter and the variance components. The extended version of GCV essentially consists of two steps, one to estimate the variance components by fixing the regularization parameter and the other to determine the regularization parameter by using the GCV method and by fixing the variance components. We simulate two examples: a purely mathematical integral equation of the first kind modified from the first example of Phillips (1962) and a typical geophysical example of downward continuation to recover the gravity anomalies on the surface of the Earth from satellite measurements. Based on the two simulated examples, we extensively compare the iterative GCV method with existing methods, which have shown that the method works well to correctly recover the unknown variance components and determine the regularization parameter. In other words, our method lets data speak for themselves, decide the correct weighting factors of different types of geophysical data, and determine the regularization parameter. In addition, we derive an unbiased estimator of the noise variance by correcting the biases of the regularized residuals. A simplified formula to save the time of computation is also given. The two new estimators of the noise variance are compared with six existing methods through numerical simulations. The simulation results have shown that the two new estimators perform as well as Wahba's estimator for highly ill-posed problems and outperform any existing methods for moderately ill-posed problems." @default.
- W2132288941 created "2016-06-24" @default.
- W2132288941 creator A5083821023 @default.
- W2132288941 date "2009-10-01" @default.
- W2132288941 modified "2023-09-27" @default.
- W2132288941 title "Iterative generalized cross-validation for fusing heteroscedastic data of inverse ill-posed problems" @default.
- W2132288941 cites W1578255497 @default.
- W2132288941 cites W1966142034 @default.
- W2132288941 cites W1966932096 @default.
- W2132288941 cites W1968032401 @default.
- W2132288941 cites W1973556394 @default.
- W2132288941 cites W1979506676 @default.
- W2132288941 cites W1990381576 @default.
- W2132288941 cites W2005140191 @default.
- W2132288941 cites W2028224035 @default.
- W2132288941 cites W2028477434 @default.
- W2132288941 cites W2040189105 @default.
- W2132288941 cites W2040623864 @default.
- W2132288941 cites W2042781366 @default.
- W2132288941 cites W2045111375 @default.
- W2132288941 cites W2050297026 @default.
- W2132288941 cites W2056735347 @default.
- W2132288941 cites W2064257851 @default.
- W2132288941 cites W2077602267 @default.
- W2132288941 cites W2080711052 @default.
- W2132288941 cites W2085514238 @default.
- W2132288941 cites W2096852181 @default.
- W2132288941 cites W2098417744 @default.
- W2132288941 cites W2099559952 @default.
- W2132288941 cites W2103088474 @default.
- W2132288941 cites W2116641053 @default.
- W2132288941 cites W2125542221 @default.
- W2132288941 cites W2134125033 @default.
- W2132288941 cites W2139065094 @default.
- W2132288941 cites W2154216658 @default.
- W2132288941 cites W2163763308 @default.
- W2132288941 cites W2164086668 @default.
- W2132288941 cites W2164456115 @default.
- W2132288941 cites W2403035479 @default.
- W2132288941 cites W2502655619 @default.
- W2132288941 cites W4234698323 @default.
- W2132288941 cites W4241172938 @default.
- W2132288941 cites W4299416517 @default.
- W2132288941 cites W832857697 @default.
- W2132288941 doi "https://doi.org/10.1111/j.1365-246x.2009.04280.x" @default.
- W2132288941 hasPublicationYear "2009" @default.
- W2132288941 type Work @default.
- W2132288941 sameAs 2132288941 @default.
- W2132288941 citedByCount "72" @default.
- W2132288941 countsByYear W21322889412012 @default.
- W2132288941 countsByYear W21322889412013 @default.
- W2132288941 countsByYear W21322889412014 @default.
- W2132288941 countsByYear W21322889412015 @default.
- W2132288941 countsByYear W21322889412016 @default.
- W2132288941 countsByYear W21322889412017 @default.
- W2132288941 countsByYear W21322889412018 @default.
- W2132288941 countsByYear W21322889412019 @default.
- W2132288941 countsByYear W21322889412020 @default.
- W2132288941 countsByYear W21322889412021 @default.
- W2132288941 countsByYear W21322889412022 @default.
- W2132288941 countsByYear W21322889412023 @default.
- W2132288941 crossrefType "journal-article" @default.
- W2132288941 hasAuthorship W2132288941A5083821023 @default.
- W2132288941 hasBestOaLocation W21322889411 @default.
- W2132288941 hasConcept C105795698 @default.
- W2132288941 hasConcept C126838900 @default.
- W2132288941 hasConcept C134306372 @default.
- W2132288941 hasConcept C135252773 @default.
- W2132288941 hasConcept C154945302 @default.
- W2132288941 hasConcept C178650346 @default.
- W2132288941 hasConcept C183115368 @default.
- W2132288941 hasConcept C185142706 @default.
- W2132288941 hasConcept C2776135515 @default.
- W2132288941 hasConcept C28826006 @default.
- W2132288941 hasConcept C33923547 @default.
- W2132288941 hasConcept C41008148 @default.
- W2132288941 hasConcept C71924100 @default.
- W2132288941 hasConceptScore W2132288941C105795698 @default.
- W2132288941 hasConceptScore W2132288941C126838900 @default.
- W2132288941 hasConceptScore W2132288941C134306372 @default.
- W2132288941 hasConceptScore W2132288941C135252773 @default.
- W2132288941 hasConceptScore W2132288941C154945302 @default.
- W2132288941 hasConceptScore W2132288941C178650346 @default.
- W2132288941 hasConceptScore W2132288941C183115368 @default.
- W2132288941 hasConceptScore W2132288941C185142706 @default.
- W2132288941 hasConceptScore W2132288941C2776135515 @default.
- W2132288941 hasConceptScore W2132288941C28826006 @default.
- W2132288941 hasConceptScore W2132288941C33923547 @default.
- W2132288941 hasConceptScore W2132288941C41008148 @default.
- W2132288941 hasConceptScore W2132288941C71924100 @default.
- W2132288941 hasIssue "1" @default.
- W2132288941 hasLocation W21322889411 @default.
- W2132288941 hasOpenAccess W2132288941 @default.
- W2132288941 hasPrimaryLocation W21322889411 @default.
- W2132288941 hasRelatedWork W1965977581 @default.
- W2132288941 hasRelatedWork W1988449893 @default.
- W2132288941 hasRelatedWork W2132678196 @default.
- W2132288941 hasRelatedWork W2143167399 @default.