Matches in SemOpenAlex for { <https://semopenalex.org/work/W2132488443> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2132488443 endingPage "282" @default.
- W2132488443 startingPage "263" @default.
- W2132488443 abstract "For many years there has been debate regarding why shock wave reflection off a solid surface has allowed regular reflection to persist beyond the incidence angles where it becomes theoretically impossible. Theory predicts that at some limiting angle the reflection point will move away from the wall and Mach reflection will occur. Previous studies have suggested that the paradox could be due to the presence of the growing viscous boundary layer immediately behind the point of reflection, and some numerical studies support this view. This paper takes the approach of establishing an experimental facility in which the theoretical assumptions regarding the surface of reflection are met, i.e. that the reflecting surface is perfectly smooth, perfectly rigid, and adiabatic. This is done by constructing a bifurcated shock tube facility in which a shock wave is split into two plane waves that are then allowed to reflect off each other at the trailing edge of wedge. The plane of symmetry between the waves then acts as the perfect reflection surface. Through a careful set of visualization experiments, and the use of multivariate analysis to take account of the uncertainty in shock Mach number, triple-point trajectory angle, and slightly different shock wave arrival times at the trailing edge, the current work shows that the transition from one type of reflection to the other does indeed occur at the theoretical value. Conventional tests of reflection off a solid wall show significantly different transition results. Furthermore, it is also shown that the thermal boundary layer plays an important role in this regard. It is thus confirmed that viscous and thermal effects are the reason for the paradox. Reasons are also suggested for the counter-intuitive behaviour of the reflected shock wave angle." @default.
- W2132488443 created "2016-06-24" @default.
- W2132488443 creator A5051775327 @default.
- W2132488443 creator A5051785199 @default.
- W2132488443 date "2002-11-30" @default.
- W2132488443 modified "2023-09-23" @default.
- W2132488443 title "Experimental confirmation of the von Neumann theory of shock wave reflection transition" @default.
- W2132488443 doi "https://doi.org/10.1017/s0022112002002343" @default.
- W2132488443 hasPublicationYear "2002" @default.
- W2132488443 type Work @default.
- W2132488443 sameAs 2132488443 @default.
- W2132488443 citedByCount "15" @default.
- W2132488443 countsByYear W21324884432012 @default.
- W2132488443 countsByYear W21324884432015 @default.
- W2132488443 countsByYear W21324884432016 @default.
- W2132488443 countsByYear W21324884432017 @default.
- W2132488443 countsByYear W21324884432019 @default.
- W2132488443 countsByYear W21324884432020 @default.
- W2132488443 crossrefType "journal-article" @default.
- W2132488443 hasAuthorship W2132488443A5051775327 @default.
- W2132488443 hasAuthorship W2132488443A5051785199 @default.
- W2132488443 hasConcept C107119854 @default.
- W2132488443 hasConcept C109663097 @default.
- W2132488443 hasConcept C111603439 @default.
- W2132488443 hasConcept C120665830 @default.
- W2132488443 hasConcept C121332964 @default.
- W2132488443 hasConcept C122881758 @default.
- W2132488443 hasConcept C126322002 @default.
- W2132488443 hasConcept C165231844 @default.
- W2132488443 hasConcept C169889854 @default.
- W2132488443 hasConcept C170395517 @default.
- W2132488443 hasConcept C188914724 @default.
- W2132488443 hasConcept C199360897 @default.
- W2132488443 hasConcept C26873012 @default.
- W2132488443 hasConcept C2781300812 @default.
- W2132488443 hasConcept C41008148 @default.
- W2132488443 hasConcept C47422493 @default.
- W2132488443 hasConcept C57879066 @default.
- W2132488443 hasConcept C65682993 @default.
- W2132488443 hasConcept C70477161 @default.
- W2132488443 hasConcept C71924100 @default.
- W2132488443 hasConcept C74650414 @default.
- W2132488443 hasConcept C97355855 @default.
- W2132488443 hasConceptScore W2132488443C107119854 @default.
- W2132488443 hasConceptScore W2132488443C109663097 @default.
- W2132488443 hasConceptScore W2132488443C111603439 @default.
- W2132488443 hasConceptScore W2132488443C120665830 @default.
- W2132488443 hasConceptScore W2132488443C121332964 @default.
- W2132488443 hasConceptScore W2132488443C122881758 @default.
- W2132488443 hasConceptScore W2132488443C126322002 @default.
- W2132488443 hasConceptScore W2132488443C165231844 @default.
- W2132488443 hasConceptScore W2132488443C169889854 @default.
- W2132488443 hasConceptScore W2132488443C170395517 @default.
- W2132488443 hasConceptScore W2132488443C188914724 @default.
- W2132488443 hasConceptScore W2132488443C199360897 @default.
- W2132488443 hasConceptScore W2132488443C26873012 @default.
- W2132488443 hasConceptScore W2132488443C2781300812 @default.
- W2132488443 hasConceptScore W2132488443C41008148 @default.
- W2132488443 hasConceptScore W2132488443C47422493 @default.
- W2132488443 hasConceptScore W2132488443C57879066 @default.
- W2132488443 hasConceptScore W2132488443C65682993 @default.
- W2132488443 hasConceptScore W2132488443C70477161 @default.
- W2132488443 hasConceptScore W2132488443C71924100 @default.
- W2132488443 hasConceptScore W2132488443C74650414 @default.
- W2132488443 hasConceptScore W2132488443C97355855 @default.
- W2132488443 hasLocation W21324884431 @default.
- W2132488443 hasOpenAccess W2132488443 @default.
- W2132488443 hasPrimaryLocation W21324884431 @default.
- W2132488443 hasRelatedWork W1989941082 @default.
- W2132488443 hasRelatedWork W1992645339 @default.
- W2132488443 hasRelatedWork W1999071324 @default.
- W2132488443 hasRelatedWork W2018762776 @default.
- W2132488443 hasRelatedWork W2026305507 @default.
- W2132488443 hasRelatedWork W2080707373 @default.
- W2132488443 hasRelatedWork W2086205740 @default.
- W2132488443 hasRelatedWork W2511795429 @default.
- W2132488443 hasRelatedWork W4293321698 @default.
- W2132488443 hasRelatedWork W581919112 @default.
- W2132488443 hasVolume "472" @default.
- W2132488443 isParatext "false" @default.
- W2132488443 isRetracted "false" @default.
- W2132488443 magId "2132488443" @default.
- W2132488443 workType "article" @default.