Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133029748> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2133029748 abstract "With the advances in remote sensing, various machine learning techniques could be applied to study variable relationships. Although prediction models obtained using machine learning techniques has proven to be suitable for predictions, they do not explicitly provide means for determining input-output variable relevance. We investigated the issue of relevance assignment for multiple machine learning models applied to remote sensing variables in the context of terrestrial hydrology. The relevance is defined as the influence of an input variable with respect to predicting the output result. We introduce a methodology for assigning relevance using various machine learning methods. The learning methods we use include regression tree, support vector machine, and K-nearest neighbor. We derive the relevance computation scheme for each learning method and propose a method for fusing relevance assignment results from multiple learning techniques by averaging and voting mechanism. All methods are evaluated in terms of relevance accuracy estimation with synthetic and measured data." @default.
- W2133029748 created "2016-06-24" @default.
- W2133029748 creator A5042564346 @default.
- W2133029748 creator A5053212550 @default.
- W2133029748 creator A5071677464 @default.
- W2133029748 date "2006-08-08" @default.
- W2133029748 modified "2023-09-23" @default.
- W2133029748 title "Relevance Assignment and Fusion of Multiple Learning Methods Applied to Remote Sensing Image Analysis" @default.
- W2133029748 cites W1563088657 @default.
- W2133029748 cites W1584527560 @default.
- W2133029748 cites W1993022127 @default.
- W2133029748 cites W2014915963 @default.
- W2133029748 cites W2026535637 @default.
- W2133029748 cites W2040884411 @default.
- W2133029748 cites W2102972601 @default.
- W2133029748 cites W2140190241 @default.
- W2133029748 cites W2148633389 @default.
- W2133029748 cites W2153635508 @default.
- W2133029748 cites W2155359044 @default.
- W2133029748 cites W2538885589 @default.
- W2133029748 cites W2598739859 @default.
- W2133029748 doi "https://doi.org/10.1109/smc-it.2006.64" @default.
- W2133029748 hasPublicationYear "2006" @default.
- W2133029748 type Work @default.
- W2133029748 sameAs 2133029748 @default.
- W2133029748 citedByCount "1" @default.
- W2133029748 crossrefType "proceedings-article" @default.
- W2133029748 hasAuthorship W2133029748A5042564346 @default.
- W2133029748 hasAuthorship W2133029748A5053212550 @default.
- W2133029748 hasAuthorship W2133029748A5071677464 @default.
- W2133029748 hasConcept C119857082 @default.
- W2133029748 hasConcept C12267149 @default.
- W2133029748 hasConcept C124101348 @default.
- W2133029748 hasConcept C134306372 @default.
- W2133029748 hasConcept C14948415 @default.
- W2133029748 hasConcept C151730666 @default.
- W2133029748 hasConcept C154945302 @default.
- W2133029748 hasConcept C158154518 @default.
- W2133029748 hasConcept C17744445 @default.
- W2133029748 hasConcept C182365436 @default.
- W2133029748 hasConcept C199539241 @default.
- W2133029748 hasConcept C2779343474 @default.
- W2133029748 hasConcept C33923547 @default.
- W2133029748 hasConcept C33954974 @default.
- W2133029748 hasConcept C41008148 @default.
- W2133029748 hasConcept C86803240 @default.
- W2133029748 hasConceptScore W2133029748C119857082 @default.
- W2133029748 hasConceptScore W2133029748C12267149 @default.
- W2133029748 hasConceptScore W2133029748C124101348 @default.
- W2133029748 hasConceptScore W2133029748C134306372 @default.
- W2133029748 hasConceptScore W2133029748C14948415 @default.
- W2133029748 hasConceptScore W2133029748C151730666 @default.
- W2133029748 hasConceptScore W2133029748C154945302 @default.
- W2133029748 hasConceptScore W2133029748C158154518 @default.
- W2133029748 hasConceptScore W2133029748C17744445 @default.
- W2133029748 hasConceptScore W2133029748C182365436 @default.
- W2133029748 hasConceptScore W2133029748C199539241 @default.
- W2133029748 hasConceptScore W2133029748C2779343474 @default.
- W2133029748 hasConceptScore W2133029748C33923547 @default.
- W2133029748 hasConceptScore W2133029748C33954974 @default.
- W2133029748 hasConceptScore W2133029748C41008148 @default.
- W2133029748 hasConceptScore W2133029748C86803240 @default.
- W2133029748 hasLocation W21330297481 @default.
- W2133029748 hasOpenAccess W2133029748 @default.
- W2133029748 hasPrimaryLocation W21330297481 @default.
- W2133029748 hasRelatedWork W131612126 @default.
- W2133029748 hasRelatedWork W1604117973 @default.
- W2133029748 hasRelatedWork W1976445448 @default.
- W2133029748 hasRelatedWork W1982986362 @default.
- W2133029748 hasRelatedWork W2015693859 @default.
- W2133029748 hasRelatedWork W2016237063 @default.
- W2133029748 hasRelatedWork W2088019762 @default.
- W2133029748 hasRelatedWork W2108351033 @default.
- W2133029748 hasRelatedWork W2125312659 @default.
- W2133029748 hasRelatedWork W2139573966 @default.
- W2133029748 hasRelatedWork W2144961153 @default.
- W2133029748 hasRelatedWork W2152058911 @default.
- W2133029748 hasRelatedWork W2597423070 @default.
- W2133029748 hasRelatedWork W2789040646 @default.
- W2133029748 hasRelatedWork W3019257970 @default.
- W2133029748 hasRelatedWork W3020098628 @default.
- W2133029748 hasRelatedWork W3088162569 @default.
- W2133029748 hasRelatedWork W3091225669 @default.
- W2133029748 hasRelatedWork W3167857852 @default.
- W2133029748 hasRelatedWork W3214587837 @default.
- W2133029748 isParatext "false" @default.
- W2133029748 isRetracted "false" @default.
- W2133029748 magId "2133029748" @default.
- W2133029748 workType "article" @default.