Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133048986> ?p ?o ?g. }
- W2133048986 endingPage "3151" @default.
- W2133048986 startingPage "3144" @default.
- W2133048986 abstract "Allogeneic hematopoietic stem-cell transplantation (HSCT) is potentially curative for acute leukemia (AL), but carries considerable risk. Machine learning algorithms, which are part of the data mining (DM) approach, may serve for transplantation-related mortality risk prediction.This work is a retrospective DM study on a cohort of 28,236 adult HSCT recipients from the AL registry of the European Group for Blood and Marrow Transplantation. The primary objective was prediction of overall mortality (OM) at 100 days after HSCT. Secondary objectives were estimation of nonrelapse mortality, leukemia-free survival, and overall survival at 2 years. Donor, recipient, and procedural characteristics were analyzed. The alternating decision tree machine learning algorithm was applied for model development on 70% of the data set and validated on the remaining data.OM prevalence at day 100 was 13.9% (n=3,936). Of the 20 variables considered, 10 were selected by the model for OM prediction, and several interactions were discovered. By using a logistic transformation function, the crude score was transformed into individual probabilities for 100-day OM (range, 3% to 68%). The model's discrimination for the primary objective performed better than the European Group for Blood and Marrow Transplantation score (area under the receiver operating characteristics curve, 0.701 v 0.646; P<.001). Calibration was excellent. Scores assigned were also predictive of secondary objectives.The alternating decision tree model provides a robust tool for risk evaluation of patients with AL before HSCT, and is available online (http://bioinfo.lnx.biu.ac.il/∼bondi/web1.html). It is presented as a continuous probabilistic score for the prediction of day 100 OM, extending prediction to 2 years. The DM method has proved useful for clinical prediction in HSCT." @default.
- W2133048986 created "2016-06-24" @default.
- W2133048986 creator A5000584189 @default.
- W2133048986 creator A5001646221 @default.
- W2133048986 creator A5013398931 @default.
- W2133048986 creator A5013640134 @default.
- W2133048986 creator A5017225753 @default.
- W2133048986 creator A5020301140 @default.
- W2133048986 creator A5020996390 @default.
- W2133048986 creator A5026667594 @default.
- W2133048986 creator A5033851673 @default.
- W2133048986 creator A5040417184 @default.
- W2133048986 creator A5042552205 @default.
- W2133048986 creator A5049172299 @default.
- W2133048986 creator A5054393582 @default.
- W2133048986 creator A5056692823 @default.
- W2133048986 creator A5058365219 @default.
- W2133048986 creator A5058925624 @default.
- W2133048986 creator A5066560929 @default.
- W2133048986 creator A5071020206 @default.
- W2133048986 creator A5076984999 @default.
- W2133048986 creator A5086661201 @default.
- W2133048986 date "2015-10-01" @default.
- W2133048986 modified "2023-10-16" @default.
- W2133048986 title "Prediction of Allogeneic Hematopoietic Stem-Cell Transplantation Mortality 100 Days After Transplantation Using a Machine Learning Algorithm: A European Group for Blood and Marrow Transplantation Acute Leukemia Working Party Retrospective Data Mining Study" @default.
- W2133048986 cites W1599263113 @default.
- W2133048986 cites W1899153651 @default.
- W2133048986 cites W1968339465 @default.
- W2133048986 cites W1973617793 @default.
- W2133048986 cites W1978508643 @default.
- W2133048986 cites W1982878372 @default.
- W2133048986 cites W1992090010 @default.
- W2133048986 cites W1995090169 @default.
- W2133048986 cites W1995551949 @default.
- W2133048986 cites W1997027018 @default.
- W2133048986 cites W1999533140 @default.
- W2133048986 cites W2000580405 @default.
- W2133048986 cites W2025358933 @default.
- W2133048986 cites W2038062093 @default.
- W2133048986 cites W2038123637 @default.
- W2133048986 cites W2042080283 @default.
- W2133048986 cites W2062871466 @default.
- W2133048986 cites W2063981093 @default.
- W2133048986 cites W2079729552 @default.
- W2133048986 cites W2084341220 @default.
- W2133048986 cites W2090352304 @default.
- W2133048986 cites W2093103229 @default.
- W2133048986 cites W2094914614 @default.
- W2133048986 cites W2099594540 @default.
- W2133048986 cites W2102336370 @default.
- W2133048986 cites W2113311381 @default.
- W2133048986 cites W2114403048 @default.
- W2133048986 cites W2114586150 @default.
- W2133048986 cites W2128812336 @default.
- W2133048986 cites W2137489389 @default.
- W2133048986 cites W2169640012 @default.
- W2133048986 cites W2171841416 @default.
- W2133048986 cites W2333929093 @default.
- W2133048986 cites W4293241248 @default.
- W2133048986 doi "https://doi.org/10.1200/jco.2014.59.1339" @default.
- W2133048986 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26240227" @default.
- W2133048986 hasPublicationYear "2015" @default.
- W2133048986 type Work @default.
- W2133048986 sameAs 2133048986 @default.
- W2133048986 citedByCount "108" @default.
- W2133048986 countsByYear W21330489862016 @default.
- W2133048986 countsByYear W21330489862017 @default.
- W2133048986 countsByYear W21330489862018 @default.
- W2133048986 countsByYear W21330489862019 @default.
- W2133048986 countsByYear W21330489862020 @default.
- W2133048986 countsByYear W21330489862021 @default.
- W2133048986 countsByYear W21330489862022 @default.
- W2133048986 countsByYear W21330489862023 @default.
- W2133048986 crossrefType "journal-article" @default.
- W2133048986 hasAuthorship W2133048986A5000584189 @default.
- W2133048986 hasAuthorship W2133048986A5001646221 @default.
- W2133048986 hasAuthorship W2133048986A5013398931 @default.
- W2133048986 hasAuthorship W2133048986A5013640134 @default.
- W2133048986 hasAuthorship W2133048986A5017225753 @default.
- W2133048986 hasAuthorship W2133048986A5020301140 @default.
- W2133048986 hasAuthorship W2133048986A5020996390 @default.
- W2133048986 hasAuthorship W2133048986A5026667594 @default.
- W2133048986 hasAuthorship W2133048986A5033851673 @default.
- W2133048986 hasAuthorship W2133048986A5040417184 @default.
- W2133048986 hasAuthorship W2133048986A5042552205 @default.
- W2133048986 hasAuthorship W2133048986A5049172299 @default.
- W2133048986 hasAuthorship W2133048986A5054393582 @default.
- W2133048986 hasAuthorship W2133048986A5056692823 @default.
- W2133048986 hasAuthorship W2133048986A5058365219 @default.
- W2133048986 hasAuthorship W2133048986A5058925624 @default.
- W2133048986 hasAuthorship W2133048986A5066560929 @default.
- W2133048986 hasAuthorship W2133048986A5071020206 @default.
- W2133048986 hasAuthorship W2133048986A5076984999 @default.
- W2133048986 hasAuthorship W2133048986A5086661201 @default.
- W2133048986 hasBestOaLocation W21330489862 @default.
- W2133048986 hasConcept C109159458 @default.
- W2133048986 hasConcept C11413529 @default.
- W2133048986 hasConcept C119857082 @default.