Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133049868> ?p ?o ?g. }
- W2133049868 endingPage "3274" @default.
- W2133049868 startingPage "3253" @default.
- W2133049868 abstract "Abstract. The work aims at discussing the role of predictive uncertainty in flood forecasting and flood emergency management, its relevance to improve the decision making process and the techniques to be used for its assessment. Real time flood forecasting requires taking into account predictive uncertainty for a number of reasons. Deterministic hydrological/hydraulic forecasts give useful information about real future events, but their predictions, as usually done in practice, cannot be taken and used as real future occurrences but rather used as pseudo-measurements of future occurrences in order to reduce the uncertainty of decision makers. Predictive Uncertainty (PU) is in fact defined as the probability of occurrence of a future value of a predictand (such as water level, discharge or water volume) conditional upon prior observations and knowledge as well as on all the information we can obtain on that specific future value from model forecasts. When dealing with commensurable quantities, as in the case of floods, PU must be quantified in terms of a probability distribution function which will be used by the emergency managers in their decision process in order to improve the quality and reliability of their decisions. After introducing the concept of PU, the presently available processors are introduced and discussed in terms of their benefits and limitations. In this work the Model Conditional Processor (MCP) has been extended to the possibility of using two joint Truncated Normal Distributions (TNDs), in order to improve adaptation to low and high flows. The paper concludes by showing the results of the application of the MCP on two case studies, the Po river in Italy and the Baron Fork river, OK, USA. In the Po river case the data provided by the Civil Protection of the Emilia Romagna region have been used to implement an operational example, where the predicted variable is the observed water level. In the Baron Fork River example, the data set provided by the NOAA's National Weather Service, within the DMIP 2 Project, allowed two physically based models, the TOPKAPI model and TETIS model, to be calibrated and a data driven model to be implemented using the Artificial Neural Network. The three model forecasts have been combined with the aim of reducing the PU and improving the probabilistic forecast taking advantage of the different capabilities of each model approach." @default.
- W2133049868 created "2016-06-24" @default.
- W2133049868 creator A5003621074 @default.
- W2133049868 creator A5069314250 @default.
- W2133049868 date "2011-10-28" @default.
- W2133049868 modified "2023-09-30" @default.
- W2133049868 title "Recent developments in predictive uncertainty assessment based on the model conditional processor approach" @default.
- W2133049868 cites W159361115 @default.
- W2133049868 cites W1594170481 @default.
- W2133049868 cites W1615539232 @default.
- W2133049868 cites W1909649765 @default.
- W2133049868 cites W1971129545 @default.
- W2133049868 cites W1973333099 @default.
- W2133049868 cites W1980238813 @default.
- W2133049868 cites W1990517717 @default.
- W2133049868 cites W2000173156 @default.
- W2133049868 cites W2014325697 @default.
- W2133049868 cites W2043455992 @default.
- W2133049868 cites W2049633694 @default.
- W2133049868 cites W2083402998 @default.
- W2133049868 cites W2088407427 @default.
- W2133049868 cites W2096904991 @default.
- W2133049868 cites W2098620356 @default.
- W2133049868 cites W2099812305 @default.
- W2133049868 cites W2105934661 @default.
- W2133049868 cites W2127741041 @default.
- W2133049868 cites W2142757364 @default.
- W2133049868 cites W2150355110 @default.
- W2133049868 cites W2153576883 @default.
- W2133049868 cites W2158840489 @default.
- W2133049868 cites W27383809 @default.
- W2133049868 cites W4235303041 @default.
- W2133049868 cites W4240194905 @default.
- W2133049868 cites W4240998383 @default.
- W2133049868 doi "https://doi.org/10.5194/hess-15-3253-2011" @default.
- W2133049868 hasPublicationYear "2011" @default.
- W2133049868 type Work @default.
- W2133049868 sameAs 2133049868 @default.
- W2133049868 citedByCount "97" @default.
- W2133049868 countsByYear W21330498682012 @default.
- W2133049868 countsByYear W21330498682013 @default.
- W2133049868 countsByYear W21330498682014 @default.
- W2133049868 countsByYear W21330498682015 @default.
- W2133049868 countsByYear W21330498682016 @default.
- W2133049868 countsByYear W21330498682017 @default.
- W2133049868 countsByYear W21330498682018 @default.
- W2133049868 countsByYear W21330498682019 @default.
- W2133049868 countsByYear W21330498682020 @default.
- W2133049868 countsByYear W21330498682021 @default.
- W2133049868 countsByYear W21330498682022 @default.
- W2133049868 countsByYear W21330498682023 @default.
- W2133049868 crossrefType "journal-article" @default.
- W2133049868 hasAuthorship W2133049868A5003621074 @default.
- W2133049868 hasAuthorship W2133049868A5069314250 @default.
- W2133049868 hasBestOaLocation W21330498681 @default.
- W2133049868 hasConcept C105795698 @default.
- W2133049868 hasConcept C111919701 @default.
- W2133049868 hasConcept C121332964 @default.
- W2133049868 hasConcept C124101348 @default.
- W2133049868 hasConcept C138885662 @default.
- W2133049868 hasConcept C149441793 @default.
- W2133049868 hasConcept C154945302 @default.
- W2133049868 hasConcept C158154518 @default.
- W2133049868 hasConcept C163258240 @default.
- W2133049868 hasConcept C17744445 @default.
- W2133049868 hasConcept C18653775 @default.
- W2133049868 hasConcept C199539241 @default.
- W2133049868 hasConcept C27206212 @default.
- W2133049868 hasConcept C33923547 @default.
- W2133049868 hasConcept C41008148 @default.
- W2133049868 hasConcept C42475967 @default.
- W2133049868 hasConcept C43214815 @default.
- W2133049868 hasConcept C44492722 @default.
- W2133049868 hasConcept C62520636 @default.
- W2133049868 hasConcept C74256435 @default.
- W2133049868 hasConcept C92424840 @default.
- W2133049868 hasConcept C98045186 @default.
- W2133049868 hasConceptScore W2133049868C105795698 @default.
- W2133049868 hasConceptScore W2133049868C111919701 @default.
- W2133049868 hasConceptScore W2133049868C121332964 @default.
- W2133049868 hasConceptScore W2133049868C124101348 @default.
- W2133049868 hasConceptScore W2133049868C138885662 @default.
- W2133049868 hasConceptScore W2133049868C149441793 @default.
- W2133049868 hasConceptScore W2133049868C154945302 @default.
- W2133049868 hasConceptScore W2133049868C158154518 @default.
- W2133049868 hasConceptScore W2133049868C163258240 @default.
- W2133049868 hasConceptScore W2133049868C17744445 @default.
- W2133049868 hasConceptScore W2133049868C18653775 @default.
- W2133049868 hasConceptScore W2133049868C199539241 @default.
- W2133049868 hasConceptScore W2133049868C27206212 @default.
- W2133049868 hasConceptScore W2133049868C33923547 @default.
- W2133049868 hasConceptScore W2133049868C41008148 @default.
- W2133049868 hasConceptScore W2133049868C42475967 @default.
- W2133049868 hasConceptScore W2133049868C43214815 @default.
- W2133049868 hasConceptScore W2133049868C44492722 @default.
- W2133049868 hasConceptScore W2133049868C62520636 @default.
- W2133049868 hasConceptScore W2133049868C74256435 @default.
- W2133049868 hasConceptScore W2133049868C92424840 @default.