Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133086277> ?p ?o ?g. }
- W2133086277 endingPage "1487" @default.
- W2133086277 startingPage "1473" @default.
- W2133086277 abstract "<para xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> We present <emphasis emphasistype=bold>iCluster</emphasis>, a fast and efficient algorithm that clusters a set of images while co-registering them using a parameterized, nonlinear transformation model. The output of the algorithm is a small number of template images that represent different modes in a population. This is in contrast with traditional, hypothesis-driven computational anatomy approaches that assume a single template to construct an atlas. We derive the algorithm based on a generative model of an image population as a mixture of deformable template images. We validate and explore our method in four experiments. In the first experiment, we use synthetic data to explore the behavior of the algorithm and inform a design choice on parameter settings. In the second experiment, we demonstrate the utility of having multiple atlases for the application of localizing temporal lobe brain structures in a pool of subjects that contains healthy controls and schizophrenia patients. Next, we employ iCluster to partition a data set of 415 whole brain MR volumes of subjects aged 18 through 96 years into three anatomical subgroups. Our analysis suggests that these subgroups mainly correspond to age groups. The templates reveal significant structural differences across these age groups that confirm previous findings in aging research. In the final experiment, we run iCluster on a group of 15 patients with dementia and 15 age-matched healthy controls. The algorithm produces two modes, one of which contains dementia patients only. These results suggest that the algorithm can be used to discover subpopulations that correspond to interesting structural or functional “modes.” </para>" @default.
- W2133086277 created "2016-06-24" @default.
- W2133086277 creator A5025901572 @default.
- W2133086277 creator A5074463509 @default.
- W2133086277 creator A5081763875 @default.
- W2133086277 creator A5083160890 @default.
- W2133086277 date "2009-09-01" @default.
- W2133086277 modified "2023-10-17" @default.
- W2133086277 title "Image-Driven Population Analysis Through Mixture Modeling" @default.
- W2133086277 cites W1492949916 @default.
- W2133086277 cites W1608766034 @default.
- W2133086277 cites W1712329996 @default.
- W2133086277 cites W1874027545 @default.
- W2133086277 cites W1975152892 @default.
- W2133086277 cites W1976154578 @default.
- W2133086277 cites W1976253288 @default.
- W2133086277 cites W1984167936 @default.
- W2133086277 cites W1991952617 @default.
- W2133086277 cites W1992974274 @default.
- W2133086277 cites W2004293194 @default.
- W2133086277 cites W2008444027 @default.
- W2133086277 cites W2018662705 @default.
- W2133086277 cites W2024287605 @default.
- W2133086277 cites W2034372240 @default.
- W2133086277 cites W2045892248 @default.
- W2133086277 cites W2053133374 @default.
- W2133086277 cites W2058986306 @default.
- W2133086277 cites W2068715962 @default.
- W2133086277 cites W2071949631 @default.
- W2133086277 cites W2076114154 @default.
- W2133086277 cites W2079158221 @default.
- W2133086277 cites W2081903011 @default.
- W2133086277 cites W2084177652 @default.
- W2133086277 cites W2092608958 @default.
- W2133086277 cites W2102214751 @default.
- W2133086277 cites W2111677918 @default.
- W2133086277 cites W2111720749 @default.
- W2133086277 cites W2113576511 @default.
- W2133086277 cites W2117914607 @default.
- W2133086277 cites W2118421222 @default.
- W2133086277 cites W2119848633 @default.
- W2133086277 cites W2121014637 @default.
- W2133086277 cites W2132406375 @default.
- W2133086277 cites W2141796362 @default.
- W2133086277 cites W2143285014 @default.
- W2133086277 cites W2150534249 @default.
- W2133086277 cites W2150601424 @default.
- W2133086277 cites W2151130155 @default.
- W2133086277 cites W2155381538 @default.
- W2133086277 cites W2155492919 @default.
- W2133086277 cites W2157675930 @default.
- W2133086277 cites W2167393047 @default.
- W2133086277 cites W2168175751 @default.
- W2133086277 cites W2169011823 @default.
- W2133086277 cites W2170644672 @default.
- W2133086277 cites W3175417087 @default.
- W2133086277 cites W4230920194 @default.
- W2133086277 cites W4237451364 @default.
- W2133086277 cites W4237977107 @default.
- W2133086277 cites W4238720984 @default.
- W2133086277 cites W4376595786 @default.
- W2133086277 doi "https://doi.org/10.1109/tmi.2009.2017942" @default.
- W2133086277 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2832589" @default.
- W2133086277 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19336293" @default.
- W2133086277 hasPublicationYear "2009" @default.
- W2133086277 type Work @default.
- W2133086277 sameAs 2133086277 @default.
- W2133086277 citedByCount "74" @default.
- W2133086277 countsByYear W21330862772012 @default.
- W2133086277 countsByYear W21330862772013 @default.
- W2133086277 countsByYear W21330862772014 @default.
- W2133086277 countsByYear W21330862772015 @default.
- W2133086277 countsByYear W21330862772016 @default.
- W2133086277 countsByYear W21330862772017 @default.
- W2133086277 countsByYear W21330862772019 @default.
- W2133086277 countsByYear W21330862772020 @default.
- W2133086277 countsByYear W21330862772021 @default.
- W2133086277 countsByYear W21330862772023 @default.
- W2133086277 crossrefType "journal-article" @default.
- W2133086277 hasAuthorship W2133086277A5025901572 @default.
- W2133086277 hasAuthorship W2133086277A5074463509 @default.
- W2133086277 hasAuthorship W2133086277A5081763875 @default.
- W2133086277 hasAuthorship W2133086277A5083160890 @default.
- W2133086277 hasBestOaLocation W21330862772 @default.
- W2133086277 hasConcept C11413529 @default.
- W2133086277 hasConcept C114614502 @default.
- W2133086277 hasConcept C115961682 @default.
- W2133086277 hasConcept C153180895 @default.
- W2133086277 hasConcept C154945302 @default.
- W2133086277 hasConcept C165464430 @default.
- W2133086277 hasConcept C167966045 @default.
- W2133086277 hasConcept C177264268 @default.
- W2133086277 hasConcept C199360897 @default.
- W2133086277 hasConcept C2908647359 @default.
- W2133086277 hasConcept C33923547 @default.
- W2133086277 hasConcept C39890363 @default.
- W2133086277 hasConcept C41008148 @default.
- W2133086277 hasConcept C42812 @default.