Matches in SemOpenAlex for { <https://semopenalex.org/work/W2133116875> ?p ?o ?g. }
- W2133116875 endingPage "2116" @default.
- W2133116875 startingPage "2035" @default.
- W2133116875 abstract "Nonlinear Dynamics has been applied to Point Process Systems profitably. Such systems manifest themselves by Series of Events in space or time that are then assimilated to Point Processes, i.e. countable collections of points in continua. Arguments are illustrated here with univariate one-dimension Point Processes representing spike trains from nerve cells. These are described fully by their timing, i.e. the instants {… t i-1 <t i <t i+1 …} when events occur. Timings are described as fully by the time series of the intervals between events {…, T i-1 , T i , T i+1 , …}; this portrayal is the most common one in Dynamics. This communication's goal is to call attention to the peculiarities of Point Process Systems most relevant to dynamic approaches. Previously, explicit, deliberate statements to that effect have been bypassed because approaches, though justified, were extensions from Continuous Systems. The Point Process notion essential for this goal is that the i th event at t i exclusively reflects the most recent finite epoch and the timing of the finite number of events within it. This is because real world events always have transitory consequences and cannot be repeated at intervals shorter than some dead time. Those finite quantities, though varying from event to event, have maxima (or least upper bounds), S for the most recent epochs and D for the numbers of events. Accordingly, the most involved will be spans from t i -S to t i and events i-D; i-D+1: S is called integration period and the D events influential. Critical is the timing of the influential events plus the i th , described by the D intervals T i-D+1 , …, T i-1 and T i also called influential. Therefore, it makes sense to assign to a Point Process the D-dimension state space whose coordinates are the influential intervals. The i th event is represented by point {T i-D+1 , …, T i-1 , T i } whose location implies the timing of events i-D, i-D+1, …, i-1 and i. Successive point positions compose a discrete trajectory with countable points. Point Process trajectories have exhibited the same kinds of behaviors and attractors as continuous cases. Point Process data are analyzed along the same steps (a–d) prescribed for continuous data but peculiarities affect the first two. Data consist, not of several variables, but of the single variable T i . Hence, in step (a) where a representative variable is selected, T i is the only choice. In (b) a discrete trajectory is extracted, with Point Processes simply that of the original data T i : points stagger along it according to the system's dynamics, and need not be periodic or uniformly distributed. With Continuous Systems, discrete trajectories arise from sampling at investigator-chosen invariant time-lags; points stagger periodically and uniformly. The remaining stages are similar for Point Process and Continuous Systems: namely, (c) trajectory embedding in a space with suitable dimensionality and (d) behavior and attractor cataloging by dimensionality, nonlinearity and predictability. The examples listed illustrate the many ways Dynamic approaches to Point Processes, as embodied by spike trains, has and will continue to contribute to the Neurosciences." @default.
- W2133116875 created "2016-06-24" @default.
- W2133116875 creator A5041967121 @default.
- W2133116875 date "2003-08-01" @default.
- W2133116875 modified "2023-09-27" @default.
- W2133116875 title "Nonlinear Dynamics of Point Process Systems and Data" @default.
- W2133116875 cites W1586810339 @default.
- W2133116875 cites W1588160892 @default.
- W2133116875 cites W1970932958 @default.
- W2133116875 cites W1976548443 @default.
- W2133116875 cites W1977967725 @default.
- W2133116875 cites W1979314372 @default.
- W2133116875 cites W1980861679 @default.
- W2133116875 cites W1982000179 @default.
- W2133116875 cites W1983850176 @default.
- W2133116875 cites W1984123219 @default.
- W2133116875 cites W1986275573 @default.
- W2133116875 cites W1988464657 @default.
- W2133116875 cites W1991690120 @default.
- W2133116875 cites W1998367480 @default.
- W2133116875 cites W2000509267 @default.
- W2133116875 cites W2003704624 @default.
- W2133116875 cites W2004060876 @default.
- W2133116875 cites W2005101215 @default.
- W2133116875 cites W2010824954 @default.
- W2133116875 cites W2012796706 @default.
- W2133116875 cites W2017209122 @default.
- W2133116875 cites W2022294591 @default.
- W2133116875 cites W2025718321 @default.
- W2133116875 cites W2027580899 @default.
- W2133116875 cites W2032544479 @default.
- W2133116875 cites W2039569251 @default.
- W2133116875 cites W2044432558 @default.
- W2133116875 cites W2045039308 @default.
- W2133116875 cites W2048610294 @default.
- W2133116875 cites W2049583642 @default.
- W2133116875 cites W2050146243 @default.
- W2133116875 cites W2051039632 @default.
- W2133116875 cites W2051839184 @default.
- W2133116875 cites W2052416885 @default.
- W2133116875 cites W2053059880 @default.
- W2133116875 cites W2056651346 @default.
- W2133116875 cites W2060317741 @default.
- W2133116875 cites W2064617097 @default.
- W2133116875 cites W2066067649 @default.
- W2133116875 cites W2072743472 @default.
- W2133116875 cites W2087380028 @default.
- W2133116875 cites W2088678566 @default.
- W2133116875 cites W2090515270 @default.
- W2133116875 cites W2091896507 @default.
- W2133116875 cites W2093615513 @default.
- W2133116875 cites W2093776567 @default.
- W2133116875 cites W2094503138 @default.
- W2133116875 cites W2099467119 @default.
- W2133116875 cites W2100820257 @default.
- W2133116875 cites W2105543503 @default.
- W2133116875 cites W2128012467 @default.
- W2133116875 cites W2130305130 @default.
- W2133116875 cites W2134484803 @default.
- W2133116875 cites W2141115150 @default.
- W2133116875 cites W2146768783 @default.
- W2133116875 cites W2161760769 @default.
- W2133116875 cites W2167091302 @default.
- W2133116875 cites W2168522676 @default.
- W2133116875 cites W2175826603 @default.
- W2133116875 cites W38689778 @default.
- W2133116875 cites W4232542152 @default.
- W2133116875 cites W4248666415 @default.
- W2133116875 cites W4298860934 @default.
- W2133116875 cites W4300126076 @default.
- W2133116875 doi "https://doi.org/10.1142/s0218127403007886" @default.
- W2133116875 hasPublicationYear "2003" @default.
- W2133116875 type Work @default.
- W2133116875 sameAs 2133116875 @default.
- W2133116875 citedByCount "28" @default.
- W2133116875 countsByYear W21331168752012 @default.
- W2133116875 countsByYear W21331168752014 @default.
- W2133116875 countsByYear W21331168752015 @default.
- W2133116875 countsByYear W21331168752017 @default.
- W2133116875 countsByYear W21331168752018 @default.
- W2133116875 countsByYear W21331168752019 @default.
- W2133116875 countsByYear W21331168752021 @default.
- W2133116875 crossrefType "journal-article" @default.
- W2133116875 hasAuthorship W2133116875A5041967121 @default.
- W2133116875 hasConcept C105795698 @default.
- W2133116875 hasConcept C110729354 @default.
- W2133116875 hasConcept C111919701 @default.
- W2133116875 hasConcept C118615104 @default.
- W2133116875 hasConcept C121332964 @default.
- W2133116875 hasConcept C143724316 @default.
- W2133116875 hasConcept C151730666 @default.
- W2133116875 hasConcept C158622935 @default.
- W2133116875 hasConcept C202444582 @default.
- W2133116875 hasConcept C2524010 @default.
- W2133116875 hasConcept C2779662365 @default.
- W2133116875 hasConcept C28719098 @default.
- W2133116875 hasConcept C33676613 @default.
- W2133116875 hasConcept C33923547 @default.